• Title/Summary/Keyword: Wire Temperature

Search Result 845, Processing Time 0.02 seconds

Low Temperature Pyrolysis for Valuable Resources Recovery from Waste Wire (I) (폐전선으로부터 유가자원 회수를 위한 저온열분해(I))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • In this study, we investigated the recovery of copper and synthetic fuel from the waste wire by low temperature pyrolysis which can overcome problems of the recent incineration methods. Through thermal decomposition process of waste wire, we achieved the big advantage of getting usable resources as the forms of copper and fuel with a very high value. The TG/DTA and small-scale reaction experiments were carried out to determine an optimum temperature for waste wire pyrolysis. And the pyrolysis was done at 350, 450, and $550^{\circ}C$, respectively, and heating rate of the TG/DTA was $5^{\circ}C/min$ untill $700^{\circ}C$. The result shows that the optimum temperature range for dehydrochlorination of PVC was $280{\sim}350^{\circ}C$, as a lower temperature range than $400{\sim}550^{\circ}C$ of PE and PP. Practically over 95% of copper metal and synthetic fuel, which has the 8027 kcal/kg as a calorific value, were recovered from the waste wire samples.

Characteristics of Tensile Deformation and Shape Recovery with Transformation Temperature Change in a Ni-Ti Alloy Wire (Ni-Ti계 합금 선재의 변태온도 변화에 따른 인장변형 및 회복 특성)

  • Choi, Y.G.;Kim, M.S.;Cho, W.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.307-313
    • /
    • 2008
  • The tensile deformation and shape recovery behaviors were studied in Ni-Ti shape memory wires showing different transformation characteristics by annealing at $200{\sim}600^{\circ}C$. Both R phase ${\rightarrow}$ B19' martensitic transformation at lower temperature and B2 ${\rightarrow}$ R phase transformation at higher temperature occurred in the shape memory wires annealed at $200{\sim}500^{\circ}C$. Transformation temperature and heat flow of B19' martensite increase but those of R phase main almost constant even with increasing annealing temperature. In the case of wires annealed and then cooled to $20^{\circ}C$, plateau on stress-strain curves in tensile testing can be observed due to the collapse of R phase variants and the formation of deformation-induced B19' martensite. In the case of wires annealed and then cooled to $-196^{\circ}C$, however, plateau on stress-strain curves does not appear and stress increases steadily with increasing tensile deformation. Comparing shape recovery rate with cooling temperature after annealing, shape recovery rate of the wire cooled to $20^{\circ}C$ is higher than that of the wire cooled to $-196^{\circ}C$ after annealing, and maximum shape recovery rate of 95% appears in the wire annealed at $400^{\circ}C$ and then cooled to $20^{\circ}C$. $R_s$ and $R_f$ temperatures measured during shape recovery tests are higher than $A_s$ and $A_f$ temperatures measured by DSC tests even at the same annealing temperature.

Study on Current Limiting Characteristics of YBCO Thin-Film Wire with Insulation Layer

  • Doo, Seung-Gyu;Du, Ho-Ik;Jeon, An-Gyoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.20-23
    • /
    • 2013
  • When applying superconducting wire to power machines, an investigation needs to be carried out on the characteristics of wire phase changes in connection with the insulating layer. This study examined trends in the increase of the wire's resistance and the characteristics of its recovery from quenching by a current-applied cycle at temperatures of 90 K, 180 K, and 250 K. The procedure was conducted based on the thickness and presence (or absence) of the insulating wire layers. To achieve this, YBCO thin-film wires with the same critical temperatures were prepared with copper and stainless steel stabilizing layers. At levels (-one, three, and five-), with superior performance, polyimide pressure-sensitive adhesive tape was attached to the wires at a very low temperature. The eight prepared test samples were wound around the linear frames. The wire's voltage and current created from the phase change characteristics were measured at the wire's prescribed temperature, using the four-point probe method. The wire's resistance and recovery characteristics were examined for each cycle at temperatures of 90 K, 180 K, and 250 K.

Microstructure and Mechanical Properties of an AA1070 Wire Severely Deformed by Drawing Process (인발공정에 의해 강소성 가공된 AA1070선재의 미세조직 및 기계적 특성)

  • Jeong, Dae-Han;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.308-314
    • /
    • 2020
  • A commercial AA1070 alloy for electrical wire is severely deformed by drawing process in which a rod with an initial diameter of 9mm into is reduced to a wire of 2mm diameter. The drawn AA1070 wire is then annealed at various temperatures from 200 to 450 ℃ for 2h. Changes in microstructure, mechanical properties and electrical properties of the specimens with annealing temperature are investigated in detail. The specimen begins partially to recrystallize at 250 ℃; above 300 ℃ it is covered with equiaxed recrystallized grains over all regions. Fiber textures of {110}<111> and {112}<111> components are mainly developed, and {110}<001> texture is partially developed as well. The tensile strength tends to decrease with annealing temperature due to the occurrence of recovery or/and recrystallization. On the other hand, the elongation of the annealed wire increases with the annealing temperature, and reaches a maximum value of 33.3 % at 300 ℃. Electric conductivity of the specimens increases with annealing temperature, and reaches a maximum value of 62.6 %IACS after annealing at 450 ℃. These results are discussed in comparison with those for the other aluminum alloy.

The Technology for Reducing Abnomal Grain Growth in 3- Roll Type Wire Rod Rolling (3-Roll 선재압연에서의 결정립조대화 방지기술)

  • 임규환;김병홍;김기환;권정석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.163-171
    • /
    • 1999
  • The abnormal grain coarsening in wire rolling induces detrimental defects, such as jagged size tolorance, severe bending after heat treatments and drawing troubles, in the following secondary processes. Neishi et al observed that there is a band type region where grain coarsenting occurs in the plastic strain vs. deformation temperature plot. Based on the finding, we have investigate whether grain sizes and ferrite volume fractions are correlation to deformation strain with three kinds of wire rod diameters as for the different average deformation conditions. The samples were chosen from the No.2 Wire Rod Mill of POSCO where 3-roll type of finishing mill stand are used. It was found in the present work that the grain size and ferrite volume fraction of the rolled and cooled microstructure were changed with rolling reduction and rolling temperature. Abnormally grown grains at various observed points were also found. To have homogeneously fine grains of microstructure from the No. 2 Wire Rod Mill, it will be easier to control finish rolling temperature at around 750$^{\circ}C$ rather than to find another rolling schedule.

  • PDF

Experimental Relationship between Electrical Impedance of a Steel Wire and Applied Stress, Temperature, and Excited Frequency (강선의 전기적 임피던스와 응력, 온도 및 주파수 사이의 실험적 관계)

  • Nguyen, Duy-Hung;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.183-189
    • /
    • 2020
  • This paper presents an experimental investigation regarding the sensitivity of electrical impedance of a steel wire to tensile stress, ambient temperature and induced frequency. For various stress levels and temperatures, the electrical impedance of a steel wire has been measured on a self-sensing system. The three experimental cases are carried out at various temperature conditions, stress levels and applied frequencies. If the temperature increases and stress level decreases at a given frequency, the electrical impedance on the steel wire increases. The results show that the correlation between electrical impedance and temperature is a linear relationship at all stress levels. It is noted that the sensitivity of impedance to temperature is much higher than the stress.

Low Temperature δ-Precipitation of Inconel 718 Alloy Wire during Cold Drawing (인코넬 718합금 선재의 냉간 인발시 δ 상 저온 석출 현상 연구)

  • Park, Jae Man;Kim, Yong Hwan;Jang, Heui Un;Chung, Won Sub
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.511-516
    • /
    • 2012
  • Low temperature ${\delta}$-precipitation phenomenon below 2-step aging ($718^{\circ}C$, $8hr+621^{\circ}C$, 8 hr) temperature of cold drawn Inconel 718 alloy wire was investigated. The investigation was carried out on wires with a cold drawn ratio of 0, 20, 50 and 70% using OM, SEM, XRD, TEM, and DSC. In microstructures of 50 and 70% drawn wire, many precipitates were found along the grain boundaries and the twin boundaries in deformation band. From the results of the XRD and TEM analysis, the precipitates were identified as plate-like ${\delta}$-phase. From the results of the DSC analysis, it was also found that a temperature of ${\delta}$-precipitation decreases with an increase of the cold drawn ratio. We concluded that cold drawing of inconel 718 wire promotes the ${\delta}$-precipitation, and under the condition of a high drawing ratio, the ${\delta}$-phase could be precipitated at a temperature below the aging temperature ($718^{\circ}C$).

Characteristics of Temperature History of Slab concrete by the Change of Hot wire Heat Capacity at -10℃ (-10℃ 조건에서의 열선 열용량 크기 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.75-77
    • /
    • 2013
  • In this study, the characteristics of temperature history was evaluated for three hot wires with different capacity installed in slab concrete which are relatively thin. Results can be summarized as follows. First, for the case of material using 5W hot wire, all decreased to below zero at or around 24 hours. Similarly, the material using 20W hot wire decreased to 2℃ below zero at or around 80 hours but satisfied the accumulative temperature of 45° D·D at 7 days of material age. On the other hand, the case of 30W hot wire, the biggest capacity, showed the high temperature history of 5℃ in average at all areas except the corners. Thus, the target accumulative temperature was secured at or around the 3 days of material age. Considering the above, the initial damage by freezing can be prevented only if 20W or higher hot wires are used for the slabs at -10℃ of extremely low temperature environment.

  • PDF

Validation Test for Transient Hot-wire Method to Evaluate the Temperature Dependence of Nanofluids (나노유체 열전도율의 온도의존성 평가를 위한 비정상열선법의 시험방법)

  • Kang, Kyoung-Min;Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.341-348
    • /
    • 2007
  • One of the controversial research issues on nanofluids is the temperature dependence of the thermal conductivity of nanofluids, that is, whether it will increase or decrease according to the temperature rise. To evaluate precisely the thermal conductivity behavior of nanofluids, a systematic way of validation experiments for the measuring instrument has been highly recommended. In this paper, procedure of the validation test for transient hot-wire method using the temperature dependence of the base fluids was explained comprehensively and the comparison of the temperature dependence of water-$Al_2O_3$ nanofluids is made between the present work and that of Das et al.

A design of multi-width HTS magnets considering both wire consumption and field homogeneity

  • Yang, Hongmin;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 2021
  • This paper presents a design methodology of high-temperature superconducting (HTS) magnets. The magnet consists of several double pancake coils with a variety of wire width. This technique, named Multi-Width, is well known to make efficient use of the superconducting wire. It is common for design of high-temperature superconducting magnets to not only reduce wire consumption used, but also consider the homogeneity of the magnetic field. In this paper, we study a design method that efficiently reduces wire usage while considering magnetic field homogeneity. The design is carried out by calculating the critical current and the critical magnetic field according to the configuration of arranging the thickness of the wire to determine the number of windings. The width of wire comprising the magnet was set to 4 - 12 mm, and the number of double pancake coils was set to an even number to consist of top-down symmetry. To verify the validity of the design, we compared the progress of the design code with a complete enumeration survey. As a case study, we designed a magnet that generates a central magnetic field of 3 T or more in a 240 mm bore in diameter. Optimality can be evaluated by weighing wire consumption and field homogeneity according to the magnet's use or user preference.