DOI QR코드

DOI QR Code

Experimental Relationship between Electrical Impedance of a Steel Wire and Applied Stress, Temperature, and Excited Frequency

강선의 전기적 임피던스와 응력, 온도 및 주파수 사이의 실험적 관계

  • Received : 2019.11.20
  • Accepted : 2019.12.12
  • Published : 2020.04.01

Abstract

This paper presents an experimental investigation regarding the sensitivity of electrical impedance of a steel wire to tensile stress, ambient temperature and induced frequency. For various stress levels and temperatures, the electrical impedance of a steel wire has been measured on a self-sensing system. The three experimental cases are carried out at various temperature conditions, stress levels and applied frequencies. If the temperature increases and stress level decreases at a given frequency, the electrical impedance on the steel wire increases. The results show that the correlation between electrical impedance and temperature is a linear relationship at all stress levels. It is noted that the sensitivity of impedance to temperature is much higher than the stress.

이 논문은 인장 응력, 주변 온도 및 인가 주파수에 대한 강선의 전기적 임피던스 민감도에 관한 실험적 조사이다. 다양한 응력 수준 및 온도에 대해서, 강선의 전기적 임피던스가 자가진단 시스템에서 측정되었다. 세 가지 경우의 실험이 다양한 온도 조건, 응력 수준 및 적용 주파수에 대해서 수행되었다. 주어진 주파수에서 온도가 상승하고 응력이 감소하면 강선의 전기 임피던스가 증가한다. 실험 결과는 전기적 임피던스와 온도 사이의 상관관계가 모든 응력 수준에서 선형 관계임을 보여준다. 온도에 대한 임피던스의 감도는 응력보다 훨씬 높다는 점이 주목 된다.

Keywords

References

  1. Agilent Technologies, Inc. (2017). Agilent U1732C Handheld LCR meter, user's guide, Agilent Technologies, California, USA.
  2. Cappello, C., Zonta, D., Laasri, H. A., Glisic, B. and Wang, M. (2018). "Calibration of elasto-magnetic sensors on in-service cable-stayed bridges for stress monitoring." Sensors, Vol. 18, No. 2, 466. https://doi.org/10.3390/s18020466
  3. Chaki, S. and Bourse, G. (2009). "Stress level measurement in prestressed steel strands using acoustoelastic effect." Experimental Mechanics, Vol. 49, pp. 673-681. https://doi.org/10.1007/s11340-008-9174-9
  4. Chen, D., Zhang, B., Li, X., Tu, C., Yuan, C., Li, W., Zhou, Z. and Liang, Z. (2018). "A stress measurement method for steel strands based on LC oscillation." Advances in Materials Science and Engineering, Vol. 2018, pp. 1-8.
  5. Chen, J. A., Ding, W., Zhou, Y., Cao, Y., Zhou, Z. M. and Zhang, Y. M. (2006). "Stress-impedance effects in sandwiched FeCuNbCrSiB/Cu/FeCuNbCrSiB films." Materials Letters, Vol. 60, No. 21, pp. 2554-2557. https://doi.org/10.1016/j.matlet.2006.03.065
  6. Chen, Z. and Zhang, S. (2018). "EM-based monitoring and probabilistic analysis of prestress loss of bonded tendons in PSC beams." Advances in Civil Engineering, Vol. 2018, No. 11, pp. 1-9.
  7. Cho, K., Kim, S. T., Cho, J. R. and Park, Y. H. (2017). "Estimation of tendon force distribution in prestressed concrete girders using smart strand." Applied Sciences, Vol. 7, No. 12, 1319. https://doi.org/10.3390/app7121319
  8. Dan, D., Jia, P., Li, G. and Niu, P. (2018). "Experimental study on mechanical and sensing properties of smart composite prestressed tendon." Materials, Vol. 11, No. 11, 2087. https://doi.org/10.3390/ma11112087
  9. Dang, N. L., Huynh, T. C., Kim, J. T. (2019). "Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study." Sensors, Vol. 19, No. 5, 1054. https://doi.org/10.3390/s19051054
  10. Duan, Y. F., Zhang, R., Dong, C. Z., Luo, Y. Z., Or, S. W., Zhao, Y. and Fan, K. Q. (2016). "Development of elasto-magneto-electric (EME) sensor for in-service cable force monitoring." International Journal of Structural Stability and Dynamics, Vol. 16, No. 04, 1640016. https://doi.org/10.1142/S0219455416400162
  11. Fang, Z. and Wang, J. (2012). "Practical formula for cable tension estimation by vibration method." Journal of Bridge Engineering, Vol. 17, No. 1, pp. 161-164. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000200
  12. Fosalau, C., Damian, C. and Zet, C. (2013). "A high performance strain gage based on the stress impedance effect in magnetic amorphous wires." Sensors and Actuators A: Physical, Vol. 191, pp. 105-110. https://doi.org/10.1016/j.sna.2012.12.014
  13. Hioki, E. E. Corporation (2006). HIOKI 3532 LCR hitester instruction manual, HIOKI E. E. Corporation, Nagano, Japan.
  14. Huang, Y. H., Fu, J. Y., Wang, R. H., Quan, G., Rui, R. and Ai-Rong, R. (2014). "Practical formula to calculate tension of vertical cable with hinged-fixed conditions based on vibration method." Journal of VibroEngineering, Vol. 16, No. 2, pp. 997-1009.
  15. Joh, C., Lee, J. W. and Kwahk, I. (2013). "Feasibility study of stress measurement in prestressing tendons using Villari effect and induced magnetic field." International Journal of Distributed Sensor Networks, Vol. 2013, 249829. https://doi.org/10.1155/2013/249829
  16. Karbhari, V. M. and Ansari, F. (2009). Structural health monitoring of civil infrastructure systems, CRC Press, Florida, USA.
  17. Kim J. K., Kim, J. W. and Park S. H. (2019). "Investigation of applicability of an embedded EM sensor to measure the tension of a PSC Girder." Journal of Sensors, Vol. 2019, No. 6, pp. 1-12, 2469647.
  18. Kim J. K., Kim, J. W., Lee, C. G. and Park S. H. (2017). "Development of embedded EM sensors for estimating tensile forces of PSC girder bridges." Sensors, Vol. 17, No. 9, 1989, 28867790. https://doi.org/10.3390/s17091989
  19. Kim, B. H. and Park, T. (2007). "Estimation of cable tension force using the frequency-based system identification method." Journal of Sound and Vibration, Vol. 304, No. 3-5, pp. 660-676. https://doi.org/10.1016/j.jsv.2007.03.012
  20. Kim, S. T., Park, Y., Park, S. Y., Cho, K. and Cho, J. R. (2015). "A sensor-type PC strand with an embedded FBG sensor for monitoring prestress forces." Sensors, Vol. 15, No. 1, pp. 1060-1070. https://doi.org/10.3390/s150101060
  21. Kraus, L., Bydzovsky, J. and Svec, P. (2003). "Continuous stress annealing of amorphous ribbons for strain sensing applications." Sensors and Actuators A: Physical, Vol. 106, No. 1-3, pp. 117-120. https://doi.org/10.1016/S0924-4247(03)00147-X
  22. Li, X., Zhang, B., Yuan, C., Tu, C., Chen, D., Chen, Z. and Li, Y. (2018). "An electromagnetic oscillation method for stress measurement of steel stands." Measurement, Vol. 125, pp. 330-335. https://doi.org/10.1016/j.measurement.2018.05.014
  23. MAX31865 (2020), GitHub, Available at: https://github.com/adafruit/Adafruit_MAX31865 (Accessed: March 5, 2020).
  24. Mohri, K., Uchiyama, T., Shen, L. P., Cai, C. M. and Panina, L. V. (2001). "Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls." Sensors and Actuators A: Physical, Vol. 91, No. 1-2, pp. 85-90. https://doi.org/10.1016/S0924-4247(01)00620-3
  25. Na, W. and Baek, J. (2018). "A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures." Sensors, Vol. 18, No. 5, 1307. https://doi.org/10.3390/s18051307
  26. Peng, B., Zhang, W. L., Liu, J. D. and Zhang, W. X. (2011). "Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate." Journal of Magnetism and Magnetic Materials, Vol. 323, No. 11, pp. 1574-1576. https://doi.org/10.1016/j.jmmm.2011.01.021
  27. Qian, J., Chen, X., Sun, L., Yao, G. and Wang, X. (2018). "Numerical and experimental identification of seven-wire strand tensions using scale energy entropy spectra of ultrasonic guided waves." Shock and Vibration, Vol. 2018, No. 6, 6905073.
  28. Qin, F. X., Peng, H. X., Popov, V. V. and Phan, M. H. (2011). "Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications." Solid State Communications, Vol. 151, No. 4, pp. 293-296. https://doi.org/10.1016/j.ssc.2010.11.042
  29. Ryu, J. Y., Huynh, T. C. and Kim, J. T. (2019). "Tension force estimation in axially loaded members using wearable piezoelectric interface technique." Sensors, Vol. 19, No. 1, 47. https://doi.org/10.1109/JSEN.2018.2875659
  30. Shen, L. P., Uchiyama, T., Mohri, K., Kita, E. and Bushida, K. (1997). "Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire." IEEE Transactions on Magnetics, Vol. 33, No. 5, pp. 3355-3357. https://doi.org/10.1109/20.617942
  31. Shen, S., Wang, Y., Ma, S. L., Huang, D., Wu, Z. H. and Guo, X. (2018). "Evaluation of prestress loss distribution during pretensioning and post-tensioning using long-gauge fiber bragg grating sensors." Sensors, Vol. 18, No. 12, 4106. https://doi.org/10.3390/s18124106
  32. Sugawara, J., Kubota, T. and Goto, S. (1996). Stress measurement method for ferromagnetic metal body, stress distribution measurement method for sheet sensor, and sheet sensor for stress distribution measurement, Japan Patent Office (In Japanese).
  33. Xie, X. and Li, X. Z. (2014). "Genetic algorithm-based tension identification of hanger by solving inverse eigenvalue problem." Inverse Problems in Science and Engineering, Vol. 22, No. 6, pp. 966-987. https://doi.org/10.1080/17415977.2013.848432
  34. Zhang, B., Tu, C., Li, X., Cui, H. and Zheng, G. (2019a). "Length effect on the stress detection of prestressed steel strands based on electromagnetic oscillation method." Sensors, Vol. 19, No. 12, 2782. https://doi.org/10.3390/s19122782
  35. Zhang, R., Duan, Y. F., Or, S. W. and Zhao, Y. (2014). "Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel cables: Design theory and experimental validation." Sensors, Vol. 14, No. 8, pp. 13644-13660. https://doi.org/10.3390/s140813644
  36. Zhang, S., Zhou, J., Zhou, Y., Zhang, H. and Chen, J. (2019b). "Cable tension monitoring based on the elasto-magnetic effect and the self-induction phenomenon." Materials, Vol. 12, No. 14, 2230. https://doi.org/10.3390/ma12142230
  37. Zhou, Y., Mao, X. H., Chen, J. A., Ding, W., Gao, X. Y. and Zhou, Z. M. (2005). "Stress-impedance effects in layered FeSiB/Cu/FeSiB films with a meander line structure." Journal of Magnetism and Magnetic Materials, Vol. 292, pp. 255-259. https://doi.org/10.1016/j.jmmm.2004.11.139
  38. Zhou, Z., Cao, Y., Zhou, Y., Chen, J. A. and Ding, W. (2006). "Stress-impedance effects in sandwiched FeCuNbCrSiB/Cu/FeCuNbCrSiB films fabricated by Microelectromechanical Systems technique." Journal of Materials Science, Vol. 42, No. 7, pp. 2450-2454. https://doi.org/10.1007/s10853-006-1269-z
  39. Zhu, X. and Scalea, F. L. (2016). "Sensitivity to axial stress of electro mechanical impedance measurements." Experimental Mechanics, Vol. 56, No. 9, pp. 1599-1610. https://doi.org/10.1007/s11340-016-0198-2