Browse > Article
http://dx.doi.org/10.12652/Ksce.2020.40.2.0183

Experimental Relationship between Electrical Impedance of a Steel Wire and Applied Stress, Temperature, and Excited Frequency  

Nguyen, Duy-Hung (Kyungnam University)
Kim, Byeong Hwa (Kyungnam University)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.40, no.2, 2020 , pp. 183-189 More about this Journal
Abstract
This paper presents an experimental investigation regarding the sensitivity of electrical impedance of a steel wire to tensile stress, ambient temperature and induced frequency. For various stress levels and temperatures, the electrical impedance of a steel wire has been measured on a self-sensing system. The three experimental cases are carried out at various temperature conditions, stress levels and applied frequencies. If the temperature increases and stress level decreases at a given frequency, the electrical impedance on the steel wire increases. The results show that the correlation between electrical impedance and temperature is a linear relationship at all stress levels. It is noted that the sensitivity of impedance to temperature is much higher than the stress.
Keywords
Tensile stress; Electrical impedance; Self-diagnosis; Nondestructive evaluation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agilent Technologies, Inc. (2017). Agilent U1732C Handheld LCR meter, user's guide, Agilent Technologies, California, USA.
2 Cappello, C., Zonta, D., Laasri, H. A., Glisic, B. and Wang, M. (2018). "Calibration of elasto-magnetic sensors on in-service cable-stayed bridges for stress monitoring." Sensors, Vol. 18, No. 2, 466.   DOI
3 Chen, D., Zhang, B., Li, X., Tu, C., Yuan, C., Li, W., Zhou, Z. and Liang, Z. (2018). "A stress measurement method for steel strands based on LC oscillation." Advances in Materials Science and Engineering, Vol. 2018, pp. 1-8.
4 Chen, J. A., Ding, W., Zhou, Y., Cao, Y., Zhou, Z. M. and Zhang, Y. M. (2006). "Stress-impedance effects in sandwiched FeCuNbCrSiB/Cu/FeCuNbCrSiB films." Materials Letters, Vol. 60, No. 21, pp. 2554-2557.   DOI
5 Chen, Z. and Zhang, S. (2018). "EM-based monitoring and probabilistic analysis of prestress loss of bonded tendons in PSC beams." Advances in Civil Engineering, Vol. 2018, No. 11, pp. 1-9.
6 Cho, K., Kim, S. T., Cho, J. R. and Park, Y. H. (2017). "Estimation of tendon force distribution in prestressed concrete girders using smart strand." Applied Sciences, Vol. 7, No. 12, 1319.   DOI
7 Dan, D., Jia, P., Li, G. and Niu, P. (2018). "Experimental study on mechanical and sensing properties of smart composite prestressed tendon." Materials, Vol. 11, No. 11, 2087.   DOI
8 Fang, Z. and Wang, J. (2012). "Practical formula for cable tension estimation by vibration method." Journal of Bridge Engineering, Vol. 17, No. 1, pp. 161-164.   DOI
9 Dang, N. L., Huynh, T. C., Kim, J. T. (2019). "Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study." Sensors, Vol. 19, No. 5, 1054.   DOI
10 Duan, Y. F., Zhang, R., Dong, C. Z., Luo, Y. Z., Or, S. W., Zhao, Y. and Fan, K. Q. (2016). "Development of elasto-magneto-electric (EME) sensor for in-service cable force monitoring." International Journal of Structural Stability and Dynamics, Vol. 16, No. 04, 1640016.   DOI
11 Fosalau, C., Damian, C. and Zet, C. (2013). "A high performance strain gage based on the stress impedance effect in magnetic amorphous wires." Sensors and Actuators A: Physical, Vol. 191, pp. 105-110.   DOI
12 Karbhari, V. M. and Ansari, F. (2009). Structural health monitoring of civil infrastructure systems, CRC Press, Florida, USA.
13 Hioki, E. E. Corporation (2006). HIOKI 3532 LCR hitester instruction manual, HIOKI E. E. Corporation, Nagano, Japan.
14 Huang, Y. H., Fu, J. Y., Wang, R. H., Quan, G., Rui, R. and Ai-Rong, R. (2014). "Practical formula to calculate tension of vertical cable with hinged-fixed conditions based on vibration method." Journal of VibroEngineering, Vol. 16, No. 2, pp. 997-1009.
15 Joh, C., Lee, J. W. and Kwahk, I. (2013). "Feasibility study of stress measurement in prestressing tendons using Villari effect and induced magnetic field." International Journal of Distributed Sensor Networks, Vol. 2013, 249829.   DOI
16 Kim, S. T., Park, Y., Park, S. Y., Cho, K. and Cho, J. R. (2015). "A sensor-type PC strand with an embedded FBG sensor for monitoring prestress forces." Sensors, Vol. 15, No. 1, pp. 1060-1070.   DOI
17 Kim J. K., Kim, J. W. and Park S. H. (2019). "Investigation of applicability of an embedded EM sensor to measure the tension of a PSC Girder." Journal of Sensors, Vol. 2019, No. 6, pp. 1-12, 2469647.
18 Kim J. K., Kim, J. W., Lee, C. G. and Park S. H. (2017). "Development of embedded EM sensors for estimating tensile forces of PSC girder bridges." Sensors, Vol. 17, No. 9, 1989, 28867790.   DOI
19 Kim, B. H. and Park, T. (2007). "Estimation of cable tension force using the frequency-based system identification method." Journal of Sound and Vibration, Vol. 304, No. 3-5, pp. 660-676.   DOI
20 Kraus, L., Bydzovsky, J. and Svec, P. (2003). "Continuous stress annealing of amorphous ribbons for strain sensing applications." Sensors and Actuators A: Physical, Vol. 106, No. 1-3, pp. 117-120.   DOI
21 Qian, J., Chen, X., Sun, L., Yao, G. and Wang, X. (2018). "Numerical and experimental identification of seven-wire strand tensions using scale energy entropy spectra of ultrasonic guided waves." Shock and Vibration, Vol. 2018, No. 6, 6905073.
22 Li, X., Zhang, B., Yuan, C., Tu, C., Chen, D., Chen, Z. and Li, Y. (2018). "An electromagnetic oscillation method for stress measurement of steel stands." Measurement, Vol. 125, pp. 330-335.   DOI
23 MAX31865 (2020), GitHub, Available at: https://github.com/adafruit/Adafruit_MAX31865 (Accessed: March 5, 2020).
24 Mohri, K., Uchiyama, T., Shen, L. P., Cai, C. M. and Panina, L. V. (2001). "Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls." Sensors and Actuators A: Physical, Vol. 91, No. 1-2, pp. 85-90.   DOI
25 Na, W. and Baek, J. (2018). "A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures." Sensors, Vol. 18, No. 5, 1307.   DOI
26 Peng, B., Zhang, W. L., Liu, J. D. and Zhang, W. X. (2011). "Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate." Journal of Magnetism and Magnetic Materials, Vol. 323, No. 11, pp. 1574-1576.   DOI
27 Qin, F. X., Peng, H. X., Popov, V. V. and Phan, M. H. (2011). "Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications." Solid State Communications, Vol. 151, No. 4, pp. 293-296.   DOI
28 Ryu, J. Y., Huynh, T. C. and Kim, J. T. (2019). "Tension force estimation in axially loaded members using wearable piezoelectric interface technique." Sensors, Vol. 19, No. 1, 47.   DOI
29 Shen, L. P., Uchiyama, T., Mohri, K., Kita, E. and Bushida, K. (1997). "Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire." IEEE Transactions on Magnetics, Vol. 33, No. 5, pp. 3355-3357.   DOI
30 Shen, S., Wang, Y., Ma, S. L., Huang, D., Wu, Z. H. and Guo, X. (2018). "Evaluation of prestress loss distribution during pretensioning and post-tensioning using long-gauge fiber bragg grating sensors." Sensors, Vol. 18, No. 12, 4106.   DOI
31 Zhang, R., Duan, Y. F., Or, S. W. and Zhao, Y. (2014). "Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel cables: Design theory and experimental validation." Sensors, Vol. 14, No. 8, pp. 13644-13660.   DOI
32 Sugawara, J., Kubota, T. and Goto, S. (1996). Stress measurement method for ferromagnetic metal body, stress distribution measurement method for sheet sensor, and sheet sensor for stress distribution measurement, Japan Patent Office (In Japanese).
33 Xie, X. and Li, X. Z. (2014). "Genetic algorithm-based tension identification of hanger by solving inverse eigenvalue problem." Inverse Problems in Science and Engineering, Vol. 22, No. 6, pp. 966-987.   DOI
34 Zhang, B., Tu, C., Li, X., Cui, H. and Zheng, G. (2019a). "Length effect on the stress detection of prestressed steel strands based on electromagnetic oscillation method." Sensors, Vol. 19, No. 12, 2782.   DOI
35 Zhang, S., Zhou, J., Zhou, Y., Zhang, H. and Chen, J. (2019b). "Cable tension monitoring based on the elasto-magnetic effect and the self-induction phenomenon." Materials, Vol. 12, No. 14, 2230.   DOI
36 Zhou, Y., Mao, X. H., Chen, J. A., Ding, W., Gao, X. Y. and Zhou, Z. M. (2005). "Stress-impedance effects in layered FeSiB/Cu/FeSiB films with a meander line structure." Journal of Magnetism and Magnetic Materials, Vol. 292, pp. 255-259.   DOI
37 Zhou, Z., Cao, Y., Zhou, Y., Chen, J. A. and Ding, W. (2006). "Stress-impedance effects in sandwiched FeCuNbCrSiB/Cu/FeCuNbCrSiB films fabricated by Microelectromechanical Systems technique." Journal of Materials Science, Vol. 42, No. 7, pp. 2450-2454.   DOI
38 Chaki, S. and Bourse, G. (2009). "Stress level measurement in prestressed steel strands using acoustoelastic effect." Experimental Mechanics, Vol. 49, pp. 673-681.   DOI
39 Zhu, X. and Scalea, F. L. (2016). "Sensitivity to axial stress of electro mechanical impedance measurements." Experimental Mechanics, Vol. 56, No. 9, pp. 1599-1610.   DOI