• Title/Summary/Keyword: Wire Bonding

Search Result 217, Processing Time 0.033 seconds

Enhancing Die and Wire Bonding Process Reliability: Microstructure Evolution and Shear Strength Analysis of Sn-Sb Backside Metal (다이 및 와이어 본딩 공정을 위한 Sn-Sb Backside Metal의 계면 구조 및 전단 강도 분석)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.170-174
    • /
    • 2024
  • In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 ℃, die bonding and isothermal heat treatment at 330 ℃ for 5 min and wire bonding at 260 ℃, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.

Direct and indirect bonding of wire retainers to bovine enamel using three resin systems: shear bond strength comparisons (부착 유지장치의 직, 간접 부착법에 따른 전단 접착력 비교)

  • Kwon, Tae-Yub;Meina, Hu;Antoszewska, Joana;Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.447-453
    • /
    • 2011
  • Objective: We compared the shear bond strength (SBS) of lingual retainers bonded to bovine enamel with three different resins using direct and indirect methods. Methods: Both ends of pre-fabricated twisted ligature wires were bonded to bovine enamel surfaces using Light-Core, Tetric N-Flow, or Transbond XT. Phosphoric acid-etched enamel surfaces were primed with One-Step prior to bonding with Light-Core or Tetric N-Flow. Transbond XT primer was used prior to bonding with Transbond XT. After 24 hours in water at $37^{\circ}C$, we performed SBS tests on the samples. We also assigned adhesive remnant index (ARI) scores after debonding and predicted the clinical performance of materials and bonding techniques from Weibull analyses. Results: Direct bonding produced significantly higher SBS values than indirect bonding for all materials. The SBS for Light-Core was significantly higher than that for Tetric N-Flow, and there was no significant difference between the direct bonding SBS of Transbond XT and that of Light-Core. Weibull analysis indicated Light-Core performed better than other indirectly bonded resins. Conclusions: When the SBS of a wire retainer is of primary concern, direct bonding methods are superior to indirect bonding methods. Light-Core may perform better than Transbond XT or Tetric N-Flow when bonded indirectly.

교정용 브라켓의 간접 접착법

  • Cha, Bong-Geun
    • The Journal of the Korean dental association
    • /
    • v.37 no.7 s.362
    • /
    • pp.530-535
    • /
    • 1999
  • Detailed finishing of the occlusion is a clinical skill that has become difficult with the development of fixed appliances. Accuracy of bracket placement definitely improves with indirect technique, Several methods for the placement of orthodontic brackets on dental casts are currently used in the indirect bonding technique. These include attachment by means of bonding resins, adhesive tapes or sticky wax. This article presents the indirect procedures of our clinic, which use paste-paste chemically cured composites. Detailed laboratory and clinical procedure for dual tray method and other application of indirect bonding will be presented.

  • PDF

Determination of Trace Elements of Ge and P in a Gold Bonding Wire by Inductively Coupled Plasma Atomic Emission Spectrometry

  • Choi, Sung-Min;Lee, Gae-Ho;Han, Jae-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.393-397
    • /
    • 2008
  • Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the presence of germanium and phosphorus in a pure gold bonding wire. The samples were dissolved with hydrobromic acid and nitric acid at room temperature. The quantitation limits were 0.012 mg L-1 at 265.118 nm for Ge and 0.009 mg L-1 at 177.495 nm for P. Using the mixed acid digestion formula of DIW+HBr+HNO3, the recoveries were in the range of 98-100% and the relative standard deviation was within 1.1-2.3%. On the other hand, the amount of Ge decreased by about 16.2% using DIW+HCl+HNO3, due to the formation of a volatile compound. The Ge contents determined using the external method and the standard addition method were 9.45 mg kg-1 and 9.24 mg kg-1, respectively, and the P contents, using the same methods, were 22.49 mg kg-1 and 23.09 mg kg-1, respectively. Both methods were successfully used to determine the trace amounts of P and Ge in the pure gold bonding wire samples.

A Study of Wire Sweep During Encapsulation of Semiconductor Chips

  • Han, Se-Jin;Huh, Yong-Jeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • In this paper, methods to analyze wire sweep during the semiconductor chip encapsulation have been studied. The wire sweep analysis is used to analyze the deformation of bonding wires that connect the chip to the leadframe during encapsulation. The analysis is done using either analytical solutions or numerical simulation. The analytical solution is used for rough but fast calculation of wire sweep. The results from the numerical simulation are closest to the experimental results.

  • PDF

Heat Dissipation Analysis of 12kV Diode by the Packaging Structure (12kV급 다이오드의 패키징 구조에 따른 방열 특성 연구)

  • Kim, Nam-Kyun;Kim, Sang-Cheol;Bahng, Wook;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1092-1095
    • /
    • 2001
  • Steady state thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin with a thickness of 25${\mu}$m. It was assumed that the generated heat which is mainly by the on-state voltage drop, 9V for 12kV diode, is dissipated by way of the conduction through diodes layers to bonding wire and of the convection at the surface of passivating resin. It was predicted by the thermal analysis that the temperature rise of a pn junction of the 12kV diode can reach at the range of 16∼34$^{\circ}C$ under the given boundary conditions. The thickness and thermal conductivity(0.3∼3W/m-K) of the passivating resin did little effect to lower thermal resistance of the diode. As the length of the bonding wire increased, which means the distance of heat conduction path became longer, the thermal resistance increased considerably. The thermal analysis results imply that the generated heat of the diode is dissipated mainly by the conduction through the route of diode-dummy wafer-bonding wire, which suggests to minimize the length of the wire for the lowest thermal resistance.

  • PDF

Optimization of wiring process in semiconductor with 6sigma & QFD (6시그마와 QFD를 활용한 반도체용 wire공법 최적화 연구)

  • Kim, Chang-Hee;Kim, Kwang-Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.3
    • /
    • pp.17-25
    • /
    • 2012
  • Wire bonding process in making semiconductor needs the most precise control and Critical To Quality(CTQ). Thus, it is regarded to be the most essential step in packaging process. In this process, pure gold wire is used to connect the chip and PCB(substrate or lead frame). However, the price of gold has been skyrocketing continuously for a long period of time and is expected to further increase in the near future. This phenomenon situates us in an unfavorable condition amidst the competitive environment. To avoid this situation, many semiconductor material making companies developed new types of wires: Au.Ag wire is one material followed by many others. This study is aimed to optimize the parameter in wire bonding with the use of 6sigma and QFD(Quality Function Deployment). 6sigma process is a good means to not only solve the problem, but to increase productivity. In order to find the key factor, we focused on VOB(Voice of Business) and VOC(Voice of Customer). The main factors from VOB, VOC are called CTQ. However, there were times when these main factors were far from offering us the correct answer, thus making the situation more difficult to handle. This study shows that QFD aids in deciding which of the accurate factors to undertake. Normally QFD is used in designing and developing products. 6sigma process is held more effective when it used with QFD.

  • PDF

Bonding of Electric Wire by Ultrasonic Welding (초음파 용접을 이용한 전선의 접합)

  • 이철구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.41-47
    • /
    • 2000
  • In this study, the purpose finds out the best welding conditions for bonding of electric wire by ultrasonic welding. The material was plastic-insulating low-voltage-cabels for automobiles. The experiment varied the values of welding time and welding pressure and fixed the values of amplitude and energy. With the facts, the best condition for ultrasonic welding to achieve bonding exactly is gained according to the size of the cross-sectional area of the cable, and the adhesive intensity is greatly influenced by the variables of welding time and welding pressure. Also when the welding time and welding time and welding pressure increase as the cross-sectional areas of the cable increase the welding result in gained exactly.

  • PDF

Solenoid Type 3-D Passives(Inductors and Trans-formers) For Advanced Mobile Telecommunication Systems

  • Park, Jae Y.;Jong U. Bu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.295-301
    • /
    • 2002
  • In this paper, solenoid-type 3-D passives (inductors and transformers) have been designed, fabricated, and characterized by using electroplating techniques, wire bonding techniques, multi-layer thick photoresist, and low temperature processes which are compatible with semiconductor circuitry fabrication. Two different fabrication approaches are performed to develop the solenoid-type 3-D passives and relationship of performance characteristics and geometry is also deeply investigated such as windings, cross-sectional area of core, spacing between windings, and turn ratio. Fully integrated inductor has a quality factor of 31 at 6 GHz, an inductance of 2.7 nH, and a self resonant frequency of 15.8 GHz. Bonded wire inductor has a quality factor of 120, an inductance of 20 nH, and a self resonant frequency of 8 GHz. Integrated transformers with turn ratios of 1:1 and n:l have the minimum insertion loss of about 0.6 dB and the wide bandwidth of a few GHz.

PASSIVE BRACKETING FOR ADJUNCTIVE ORTHODONTICS

  • Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.26 no.6
    • /
    • pp.717-721
    • /
    • 1996
  • With conventional orthodontics, it was difficult for the anchorage segments of the wire to be engaged passively in the brackets even with complicated bending. To overcome this limitation, a kind of indirect bonding, "passive bracketing", has been developed. The present article shows laboratory and clinical procedures of the passive bracketing

  • PDF