• Title/Summary/Keyword: Wire Bending Machine

Search Result 10, Processing Time 0.025 seconds

Gear Train Development for CNC Wire Bending Machine (CNC 와이어 벤딩기 구동장치 개발)

  • Cho, Hyun-Deog;Choi, Sung-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • CNC wire bending machines are used in industries to make a type variety of wire products such as long links. The machines have a long arm device to rotate in order to remove forming errors by flexibility of wire. Generally, the machines which constructed servo motors in the arm have the rotating range of the arm under 360 degree because the servo motors connect with fixed control devices on frame by many cables. The rotating angle under 360 degree limits working speed and forming geometry. Therefore this study developed a gear train to drive a parts in arm and to be independent on arm rotation movement. The developed gear train can transfer four movements to four components in arm and is consists parallel of four pairs of satellite gear trains. This study constructed the CNC wire bending machine with the developed gear train and verified that the gear train could drive internal components independently on arm rotation.

  • PDF

Mechanical Characteristics when Wire Electrical Discharge Machining and Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 연삭가공시 기계적 특성)

  • 김종업;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.172-178
    • /
    • 2001
  • Titanium alloys have lightness, high strength and good corrosion resistant characteristics, and broadly used in manufacturing parts for military and aerospace industries. And these alloys also are recognized for organism materials comparatively and used as fixing ones in the human body. Nevertheless thess alloys have excellent properties such as corrosion resistance, heat resistance, and good tensile strength, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by tools. Therefore, it is required nontraditional machining process. And the mechanical characteristics such as surface structure and shape, hardness and bending strength are studied for wire electrical discharge machined and surface ground titanium alloys for various heat-treated conditions.

  • PDF

Accuracy of lingual fixed retainers fabricated using a CAD/CAM bending machine

  • Fu Ping Cui;Jung-Jin Park;Seong-Hun Kim
    • The korean journal of orthodontics
    • /
    • v.54 no.4
    • /
    • pp.257-263
    • /
    • 2024
  • Objective: Lingual fixed retainers, made from 0.0175-inch 3-strand twisted stainless steel wire (TW) and 0.016 × 0.022-inch straight rectangular wire (RW), are generally used in clinical practice. This study aimed to calculate their accuracy by comparing the discrepancy between computer-aided customized retainers made from these two types of wires. Methods: Eleven orthodontic patients were selected, resulting in 22 maxillary and mandibular three-dimensional printing dental models. Two types of lingual fixed retainers were bonded from canine to canine. To determine the accuracy, five points were chosen for each model, resulting in 110 selected points. The absolute values of the distances on the x-, y-, and z-axes were measured to compare the accuracy of the two types of computer-aided retainers. Results: The accuracy of the two types of retainers did not differ significantly in the x- and z-axes, but only in the y-axis (P < 0.01), where RW-fixed retainers exhibited a slightly but significantly increased distance compared to the TW. Conclusions: Both types of retainers showed high accuracy; however, RW had a slight but statistically significant difference along the y-axis compared with TW. This type of computer-aided design/computer-aided manufacturing bending machine is limited to two dimensions, and the dental arch is curved. Therefore, RW may require slight manual adjustment by the practitioner after manufacturing.

Vibration Characteristics of a Wire-Bonding Transducer Horn (와이어 본딩용 트랜스듀서 혼의 진동 특성)

  • Yim, Vit;Han, Dae-Ung;Lee, Seung-Yeop;An, Geun-Sik;Gang, Gyeong-Wan;Kim, Guk-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.583-588
    • /
    • 2007
  • This paper investigates the vibration characteristics of a wire-bonding transducer horn for high speed welding devices. The sample wire-bonder uses the input frequency of 136 kHz. The ultrasonic excitation causes the various vibrations of transducer horn and capillary. The vibration modes and frequencies close to the exciting frequency are identified using ANSYS. The nodal lines and amplification ratio of the ultrasonic horn are also obtained in order to evaluate the bonding performance of the sample wire-bonder system. The FEM results and experimental results show that the sample wire-bonder system uses the bending mode of 136 kHz as principal motion for bonding. The major longitudinal mode exists at 119 kHz below the excitation frequency. It is recommeded that the sample system is to set the excitation frequency at 119 kHz to improve bonding performance.

  • PDF

Development of Analysis Method and Experimental Equipment for Fatigue Durability of Automotive Wire Harness System (자동차 와이어 하네스 피로내구 해석 방법론 및 시험기기 개발)

  • Lee, Heung-Shik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • In this study, the methodology for the fatigue life prediction using finite element method(FEM) in wire, bundle and assembly level of the wire harness system and the development of the fatigue life test machine for the numerical analysis are investigated. To obtain stress-life(S-N) histories of the componential wires of the system, five kinds of wires are prepared and applied to the repeated bending motion using developed fatigue life test equipment. Equivalent model of the wire from the rule of mixtures theory is used for the material modeling of sheath and wire core combination. Contact conditions among the wires, taping conditions are established through the bundle level test and numerical bundle analysis. Wire and bundle level results are adopted for the assembly level analysis. For the assembly level analysis, real wire harness system including bundle and grommet is numerically modeled and applied contact condition between wires with real opening motion. The fatigue life more than 700,000 cycles of the assembly is obtained from the FEM, and it is confirmed that the result has good agreement with the experimental result.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

A Study on the Displacement and Stress Analysis of Hollow Rollers for a Wire Saw Machine (와이어 소 머신용 중공롤러의 변위량과 응력해석에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.10-15
    • /
    • 2014
  • In this paper, the displacement and stress strength safeties have been presented for cylindrical hollow rollers of a wire saw machine. Using the finite element method, the hollow roller with Y-shaped shift and vertical columns between three tubes has been developed to analyze the displacement behavior and stress strength safeties. For the same diameter and length of hollow roller models with a different weight, the displacement behavior safety of Y-shaped shift column and vertical column models is heavily depending on the total length of a hollow roller, which is closely related to the bending moment of a hollow roller structure. But, the stress strength of a hollow roller is more influenced by the cross sectional area of a hollow roller for the similar weight. Thus, this paper recommends Y-shaped hollow roller for increasing the roller strength safety and decreasing a total roller weight.

Comparison of the cyclic fatigue resistance of One Curve, F6 Skytaper, Protaper Next, and Hyflex CM endodontic files

  • Charlotte Gouedard;Laurent Pino;Reza Arbab-Chirani;Shabnam Arbab-Chirani;Valerie Chevalier
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.2
    • /
    • pp.16.1-16.9
    • /
    • 2022
  • Objectives: This study compared the cyclic fatigue resistance of One Curve (C wire) and F6 Skytaper (conventional austenite nickel-titanium [NiTi]), and 2 instruments with thermos-mechanically treated NiTi: Protaper Next X2 (M wire) and Hyflex CM (CM wire). Materials and Methods: Ten new instruments of each group (size: 0.25 mm, 6% taper in the 3 mm tip region) were tested using a rotary bending machine with a 60° curvature angle and a 5 mm curvature radius, at room temperature. The number of cycles until fracture was recorded. The length of the fractured instruments was measured. The fracture surface of each fragment was examined with a scanning electron microscope (SEM). The data were analyzed using one-way analysis of variance and the post hoc Tukey test. The significance level was set at 0.05. Results: At 60°, One Curve, F6 Skytaper and Hyflex CM had significantly longer fatigue lives than Protaper Next X2 (p < 0.05). No statistically significant differences were found in the cyclic fatigue lives of One Curve, F6 Skytaper, and Hyflex CM (p > 0.05). SEM images of the fracture surfaces of the different instruments showed typical features of fatigue failure. Conclusions: Within the conditions of this study, at 60° and with a 5 mm curvature radius, the cyclic fatigue life of One Curve was not significantly different from those of F6 Skytaper and Hyflex CM. The cyclic fatigue lives of these 3 instruments were statistically significantly longer than that of Protaper Next.

Vibration Characteristics of a Wire-Bonding Ultrasonic Horn (와이어 본딩용 초음파 혼의 진동 특성)

  • Kim, Young Woo;Yim, Vit;Han, Daewoong;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2014
  • This study investigates the vibration characteristics of a wire-bonding piezoelectric transducer and ultrasonic horn for high-speed and precise welding. A ring-type piezoelectric stack actuator is excited at 136 kHz to vibrate a conical-type horn and capillary system. The nodal lines and amplification ratio of the ultrasonic horn are obtained using a theoretical analysis and FEM simulation. The vibration modes and frequencies close to the driving frequency are identified to evaluate the bonding performance of the current wire-bonder system. The FEM and experimental results show that the current wire-bonder system uses the bending mode of 136 kHz as the principal motion for bonding and that the transverse vibration of the capillary causes the bonding failure. Because the major longitudinal mode exists at 119 kHz, it is recommended that the design of the current wire-bonding system be modified to use the major longitudinal mode at the excitation frequency and to minimize the transverse vibration of capillary in order to improve the bonding performance.

Impact of Lumen Size and Helical Coil Place Change in Spring on Orthodontic Force (Spring의 lumen size와 helical coil 형성 위치 변화가 교정력에 미치는 영향)

  • Lee, Gyu-Sun;Lee, Sun-Kyoung;Kim, Bok-Dong
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • Purpose: The purpose of this study was to impact of force system change in finger spring that add helical coil one round on orthodontic force. Methods: The following conclusions were drawn from the experiment conducted after bending 90 samples with a CNC wire forming machine while changing the height and lumen size to 1mm - 3mm - 5mm and 2mm - 3mm - 4mm respectively in the coil of the force system in finger spring added with one wheel of helical coil of 18-8 stainless steel round wire (${\Phi}0.5mm$, spring hard) from Jinsung Co. in domestic market under the following conditions: Laboratory name = Instron 5942; Temperature($deg^{\circ}C$) = 18.00; Humidity(%) = 50.00; Rate 1 = 10.00000 mm/min; Compressive extension = 5.0mm. Results: When Coil height is 1, 3, 5mm and lumen size is 2, 3, 4mm reduce finger spring as mean value of compressive extension occasion maximum load(mN) increases as coil height rises, and lumen size grows to 5.0mm. And was expose that compressive load(mN) increases as coil position of finger spring rises and increase as lumen size is decrescent. Conclusion: As the adherence height of coil was raised from 1mm through 3mm to 5mm, compressive load increased. As the lumen size increased from 2mm through 3mm to 4mm, compressive load decreased. Therefore, these results suggest that it is desirable to lower the coil height and enlarge the lumen size to enhance the biomechanical efficiency of finger spring when manufacturing the finger spring for removable orthodontic devices.