• Title/Summary/Keyword: Wiper System

Search Result 37, Processing Time 0.023 seconds

Improvement of Flight Safety on Configuration Change of Rotorcraft Wiper Arm (회전익 항공기의 와이퍼 암 형상변경을 통한 비행 안전성 향상)

  • Kim, Dae-Han;Lee, Yoon-Woo;An, Jeong-Min;Park, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.736-741
    • /
    • 2017
  • This paper examines the design for improving the wiper system of rotorcraft. During rotorcraft operation, the wiping performance and excessive clearance can decrease. The wiper system consists of a wiper arm assembly, motor, convertor and flex drive. If there is a problem with the wiper system, the operation ability decreases because the operation is restricted in a rainy environment. There are two main causes of the problem of the wiper system: the lifting forces acting on the wiper arm in aircraft flight and the excessive gap of the components. To remedy these two problems, the wiper arm was improved. The improvements included increased contact pressure on the wiper arm (spring tension), improved gear clearance, and material and shape changes. Durability test, aircraft ground test and flight test were carried out to verify the improved shape, and it was confirmed that the wiping performance and clearance problems were solved. Currently, the rotorcraft is operated without problem by applying the improved shape, and this design improvement process will be a useful reference for future rotorcraft development.

Development of OPAMP in an A/D Converter for Pressure Measurement (압력측정용 A/D변환기의 OPAMP 개발)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.435-442
    • /
    • 2010
  • The efficiency of the car's wiper blade has a great contribution to the guarantee of security. To guarantee the wiper blade's ability of getting rid of dust sticking on the glass surface, the qualities of lubricant, durability, heat resistant, low temperature, ozone resistant, chemical resistant must be good as well as it being noiseless. Like this, in order to improve the wiper's skills, it is essential to have a system that is able to assess and analyse the properties of the wiper. In this paper, to create a system that measures the car's wiper pressure, an analog/digital converter (ADC) that receives signals generated from the pressure sensor and transmits it to a personal computer is proposed. The designed ADC is one of the pipeline ADCs that can obtain fast movement rate and also a structure that can optimize the entire system's area as well as the consumption of strength.

Physical Properties of the Windshied wiper Blade Rubber According to Vulcanization System (가황조건에 따른 Wiper Blade 고무의 특성변화)

  • Yun, Chang-Han;Gwon, Yeong-Bae
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.27-43
    • /
    • 1984
  • In order to obtain the high resilience, low compression set and less of hardness change in the wiper blade rubber, vulcanization system and receipes must be controlled. To improve the above the above Physical properties, the system should be taken as follows. i) peroxide vulcanization system and sulfur vulcanization system. ii) rubber having more cis-form than trans-form. iii) moderate particle size cabon black. v) usage of other improvement agent. The rubber blade with 4.4% compression set, 76% resilience, Hs 0 $\pm$ 2 hardness change could be abtained through vulcanization system, In addition, the surface of wiper blade must be treated by chemically and physically to minimize for the skid and friction.

  • PDF

Contact Pressure Analysis of a Windshield Wiperblade (와이퍼 블레이드의 누름압 해석)

  • Lee, Byoung-Soo;Shin, Jin-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

Estimation of Contact Pressure of a Flat Wiper Blade by Dynamic Analysis (플랫 타입 와이퍼 블레이드의 동적 해석을 통한 누름압 예측)

  • Kim, Wook-Hyeon;Park, Tae-Won;Chai, Jang-Bom;Jung, Sung-Pil;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.837-842
    • /
    • 2010
  • The wiper system of a vehicle is important because it wipes the windshield, thereby enabling drivers to see through the windshield even under conditions of rain and snow. The blade is the key component of the wiper system because it wipes the windshield. When wiper-arm spring causes the blade to be pressed on the windshield optimum performance of wiping can be achieved when appropriate contact pressure is maintained. In this study, a dynamic analysis of the wiper system is carried out. A three-dimensional finite-element model of the wiper system is generated using SAMCEF, a commercial structural dynamic analysis program. The distribution of the contact pressure of the blade in its dynamic state is calculated. The simulation result is compared to the experiment result. Using the results of this study, the contact pressure of the blade can be estimated.

Numerical Study on Aerodynamic Lift on Windshield Wiper of High-Speed Passenger Vehicles (자동차 고속 주행시 와이퍼 부상현상에 대한 수치해석 연구)

  • Lee, Seung-Ho;Lee, Sung-Won;Hur, Nahm-Keon;Choi, Woo-Nyoung;Sul, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • In the present study, a three-dimensional CFD simulation on aerodynamic lift acting on windshield wiper blades was performed to improve the wiping performance of a vehicle moving at a high speed. To predict the reliable flow characteristics around the windshield wiper system, the computational domain included the full vehicle model with detailed geometry of wiper blades in the wind tunnel. From the numerical results, the drag and lift coefficients of wiper blade were obtained for the performance of windshield wiper. With this aerodynamic characteristics of windshield wiper, the effects of wiping angles and hood tip angle on the wiping performance of the windshield wiper were evaluated.

An Analysis about the Behavior of the Wiper Blade Including Incompressibility (비압축성을 고려한 와이퍼 블레이드의 거동 해석)

  • Chung, Won-Sun;Song, Hyun-Seok;Park, Tae-Won;Jung, Sung-Pil;Kim, Wook-Hyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

The Characteristics of Wiper Blade Rubber with Surface Treatments (와이퍼 블레이드 고무의 표면 처리에 따른 특성)

  • Rho, Seung-Baik;Lim, Mi-Ae;Park, Jin-Kyu;Son, Jeon-Ik
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The surface of wiper blade(W/B) rubber was chlorinated by chemical treatment method using the hydrochloric acid(HCI) and sodium hypochlorite(NaOCl). From the results of contact angle measurement, friction coefficient measurement, and ATR-IR spectra, the surface characteristics of chlorinated W/B rubber with time of chlorination were studied. Contact angles for W/B rubber with increasing time of chlorination and chlorine concentration were measured for the water and ethylene glycol. From the results, contact angle fell rapidly with increasing time of chlorination and chlorine concentration, reaching a constant value after about 10min. And the wettability of W/B rubber surface by means of chlorination has been improved. For an unchlorinated W/B rubber, the friction coefficient with time of chlorination decreased from 1.27 to 0.20~0.23 on full chlorination. As the results it was considered that abrasion resistance of W/B rubber surface has been also improved. The values of pH and $Cl^-$ ion concentration in a chlorine treatment solution decreased as the extent of chlorination of W/B rubber surface increased. From the results of ATR-IR spectra, it was observed that C=C double band of W/B rubber surface transformed into C-Cl band, but quantitative determination of the extent of chlorination was not feasible because of the complexity of chlorination reactions.

  • PDF

Railway Car Window wiper System Application Investigation (철도차량 윈도와이퍼 우적 System 적용 검토 고찰)

  • Ko, Young-Ho;Lee, Gi-Su;Cha, Gwan-Bong;Lee, Shuk-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.755-760
    • /
    • 2007
  • The research will be essential that the method for strengthening safety are safe installations in a hardware portion, a safe running ceremony of the vehicle employee (an engine driver) and the estimate of the situation which is accurate. In railway car the window wiper which is auxiliary equipment for safe operation is changed the existing manual control method with automatic correspondence precipitation used raindrops censor which can assure the vision of driving. It can be easy to safe driving as might have expected the object. We carried out studies technical review investigation which can accomplish the best suited wiping speed in maintaining an introduction existing system in the manual control system applied the existing train and corresponding to precipitation. The observation fact in the studies can be possible to ensure safety operation. That is, Manual operation method (of the driver) to add the automatic speed adjust function can operate improved window wiper drive system when it rains and, as was expected, it is able to ensure the range of a good railroad driver's vision and to concentrate in working at rainfall.

  • PDF