• Title/Summary/Keyword: Winter precipitation

Search Result 318, Processing Time 0.028 seconds

Future Change Using the CMIP5 MME and Best Models: I. Near and Long Term Future Change of Temperature and Precipitation over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: I. 동아시아 기온과 강수의 단기 및 장기 미래전망)

  • Moon, Hyejin;Kim, Byeong-Hee;Oh, Hyoeun;Lee, June-Yi;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.403-417
    • /
    • 2014
  • Future changes in seasonal mean temperature and precipitation over East Asia under anthropogenic global warming are investigated by comparing the historical run for 1979~2005 and the Representative Concentration Pathway (RCP) 4.5 run for 2006~2100 with 20 coupled models which participated in the phase five of Coupled Model Inter-comparison Project (CMIP5). Although an increase in future temperature over the East Asian monsoon region has been commonly accepted, the prediction of future precipitation under global warming still has considerable uncertainties with a large inter-model spread. Thus, we select best five models, based on the evaluation of models' performance in present climate for boreal summer and winter seasons, to reduce uncertainties in future projection. Overall, the CMIP5 models better simulate climatological temperature and precipitation over East Asia than the phase 3 of CMIP and the five best models' multi-model ensemble (B5MME) has better performance than all 20 models' multi-model ensemble (MME). Under anthropogenic global warming, significant increases are expected in both temperature and land-ocean thermal contrast over the entire East Asia region during both seasons for near and long term future. The contrast of future precipitation in winter between land and ocean will decrease over East Asia whereas that in summer particularly over the Korean Peninsula, associated with the Changma, will increase. Taking into account model validation and uncertainty estimation, this study has made an effort on providing a more reliable range of future change for temperature and precipitation particularly over the Korean Peninsula than previous studies.

The Effects of Atmospheric River Landfalls on Precipitation and Temperature in Korea (Atmospheric River 상륙이 한반도 강수와 기온에 미치는 영향 연구)

  • Moon, Hyejin;Kim, Jinwon;Guan, Bin;Waliser, Duane E.;Choi, Juntae;Goo, Tae-Young;Kim, Youngmi;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.343-353
    • /
    • 2019
  • The seasonal climatology of atmospheric rivers (ARs) and their effects on the seasonal precipitation and temperature in Korea are examined using the AR chronology obtained by a methodology based on the vertically integrated water vapor transport (IVT) in conjunction with a fine-scale gridded analysis of station precipitation and temperature. ARs are found to affect Korea most heavily in the warm season with minimal impacts in winter. This contrasts the AR effects in the western North America and the Western Europe that are affected most in winters. Significant portions of precipitation in Korea are associated with AR landfalls for all seasons; over 35% (25%) of the summer (winter) rainfall in the southern part of the Korean peninsula. The percentage of AR precipitation over Korea decreases rapidly towards the north. AR landfalls are also associated with heavier-than-normal precipitation events for all seasons. AR landfalls are associated with above-normal temperatures in Korea; the warm anomalies increase towards the north. The warm anomalies during AR landfalls are primarily related to the reduction in cold episodes as the AR landfalls in Korea are accompanied by anomalous southerlies/southwesterlies.

The Seasonal Correlation Between Temperature and Precipitation Over Korea and Europe and the Future Change From RCP8.5 Scenario (우리나라 인근과 유럽의 계절에 따른 강수와 기온의 관계 및 RCP8.5 시나리오에 기반한 미래 전망)

  • Kim, Jin-Uk;Boo, Kyung-On;Shim, Sungbo;Kwon, Won-Tae;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • It is imperative to understand the characteristics of atmospheric circulation patterns under the climate system due to its impact on climatic factors. Thus this study focused on analyzing the impact of the atmospheric circulation on the relationship between precipitation and temperature regionally. Here we used monthly gridded observational data (i.e., CRU-TS3.2, NOAA-20CR V2c) and HadGEM2-AO climate model by RCP8.5, for the period of 1960~1999 and 2060~2099. The experiment results indicated that the negative relationship was presented over East Asia and Europe during summer. On the other hand, at around Korea (i.e. EA1: $31^{\circ}N{\sim}38^{\circ}N$, $126^{\circ}E{\sim}140^{\circ}E$) and Northwestern Europe (i.e. EU1: $48^{\circ}N{\sim}55^{\circ}N$, $0^{\circ}E{\sim}16^{\circ}E$) in winter, strong positive relationship dominate due to warm moist advection come from ocean related to intensity variation of the East Asian winter monsoon (EAWM) and North Atlantic Oscillation (NAO), respectively. It was found that values of positive relation in EA1 and EU1 at the end of the 21st century is regionally greater than at the end of 20th century during winter since magnitude of variation of the EAWM and NAO is projected to be greater in the future as result of simulation with RCP 8.5. Future summer, the negative correlations are weakened in EA1 region while strengthened in EU1 region. For better understanding of correlations with respect to RCP scenarios, a further study is required.

The characteristics of folk house related to climate in Cheju island (기후 특성과 관련된 제주도의 민가 경관)

  • Kim, Ki-Deog;Lee, Seung-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.3
    • /
    • pp.29-43
    • /
    • 2001
  • This paper examined characteristics of folk houses related to climate in Cheju island using climate data, documents and field survey data. Precipitation and humidity affect characteristics of folk houses in the southern parts of the island during summer while in winter, northern parts are mainly affected by wind. Chuck-gub has been shown through all over Cheju island due to the characteristics of precipitation. Jaechangmoon exists in southern parts of the island and these parts are experienced high humidity in summer The double-row room houses, the low eaves, gentle slop roof and stone wall are distributed through Cheju island and is related to wind. The double door is common in the northern parts because of strong winter monsoon, and Yimoonkan exists in the coastal area of the northern parts. Outer wall, Pung-Che and Gorangche are affected by winter monsoon and abundant precipitation. Gorangche has shown through both the northern parts and southeastern parts. Folk houses in the southern parts are more open than in northern parts. Folk houses in the northern parts are divided into the coastal type and the piedmont type. In the southern parts, they are subdivided the eastern type and the western type by the appearance of Gorangche.

  • PDF

Analysis of Diurnal and Semidiurnal Cycles of Precipitation over South Korea (한반도 강수의 일주기 및 반일주기 성분 분석)

  • Lee, Gyu-Hwan;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.475-483
    • /
    • 2008
  • The hourly precipitation data from 1973 to 2007 observed at 60 weather stations over Korea are used to characterize the diurnal and semidiurnal cycles of total precipitation amount, intensity and frequency and examine their spatial patterns and interannual variations. The results show that the diurnal cycle peaks in the morning (03-09LST) and the semidiurnal cycle peaks in the late afternoon (16-20LST). It is found that the spatial variations of the peak phase of diurnal or semidiurnal cycle relative to their corresponding seasonal mean cycle are considerably small (large) for total precipitation amount and intensity (frequency, respectively) in both winter and summer seasons. Also, the diurnal phase variations for individual years relative to the seasonal mean precipitation show the significant interannual variability with dominant periods of 2-5 years for all three elements of precipitation and the slightly decreasing trend in total precipitation amount and intensity. To compare the relative contributions of frequency and intensity to the diurnal and semidiurnal cycles (and their sum) of total precipitation amount, the percentage variance of each cycle of precipitation amount explained by frequency is estimated. The fractional variance accounted for by precipitation intensity is greater than that of frequency for these three cycles. All above analyses suggest that intensity plays a more important role than frequency in the diurnal variations of total precipitation amount.

Spatio-Temporal Changes in Seasonal Multi-day Cumulative Extreme Precipitation Events in the Republic of Korea (우리나라 사계절 다중일 누적 극한강수현상의 시·공간적 변화)

  • Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.1
    • /
    • pp.98-113
    • /
    • 2015
  • In this study, spatial and temporal patterns and changes in seasonal multi-day cumulative extreme precipitation events defined by maximum 1~5 days cumulative extreme precipitation observed at 61 weather stations in the Republic of Korea for the recent 40 years(1973~2012) are examined. It is demonstrated that the magnitude of multi-day cumulative extreme precipitation events is greatest in summer, while their sensitivity relative to the variations of seasonal total precipitation is greatest in fall. According to analyses of linear trends in the time series data, the most noticeable increases in the magnitude of multi-day cumulative extreme precipitation events are observable in summer with coherences amongst 1~5 days cumulative extreme precipitation events. In particular, the regions with significant increases include Gyeonggi province, western Gangwon province and Chungcheong province, and as the period for the accumulation of extreme precipitation increases from 1 day to 5 days, the regions with significantly-increasing trends are extended to the Sobaek mountain ridge. It is notable that at several scattered stations, the increases of 1~2 days cumulative extreme precipitation events are observed even in winter. It is also observed that most distinct increasing tendency of the ratio of these multi-day cumulative extreme precipitation to seasonal total precipitation appears in winter. These results indicate that proactive actions are needed for spatial and temporal changes in not only summer but also other seasonal multi-day cumulative extreme precipitation events in Korea.

  • PDF

The Study of Correlations between Air-Sea Temperature Difference and Precipitation and between Wind and Precipitation in the Yeongdong Coastal Region in Relation to the Siberian High (겨울철 시베리아 고기압과 관련된 영동 해안 강수량과 해기차 및 바람의 상관성에 관한 연구)

  • Song, Ji-Ae;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.127-140
    • /
    • 2016
  • In this study, the correlations between AST850 and precipitation, and those between WDT and precipitation in the Yeongdong coastal region under the direct/indirect influence of the expansion of cP (continental polar air mass) high were quantitatively analyzed based on the winter season data for the last 20 years, according to surface pressure patterns such as Type 1 (cP high expansion type), Type 2 (cP high expansion + trough type), Type 4 (South trough type), and Type 5 (East Sea trough type). Here, AST850 represents 'sea surface temperature minus temperature on 850 hPa level' and WDT represents 'a speed of 1000 hPa wind projected onto a certain wind direction times precipitation duration in hour'. First, the correlation coefficients between AST850 and precipitation in Type 1, Type 2, and Type 5 cases were 0.253, 0.384, and 0.398 respectively, indicating that a tendency of increasing precipitation linearly with the value of AST850 is slightly presented. In the case of Type 4, however, the coefficient was -0.15, representing almost no linear correlation between AST850 and precipitation. In the correlation between WDT and precipitation, there was the largest correlation coefficient (0.464) between WDT along a direction of $90^{\circ}$ and at EN1 in Type 1 cases. In the case of Type 2, there was the largest correlation coefficient (0.767) between WDT along a direction of $67.5^{\circ}$ and at ES1. In the case of Type 4, there was the largest correlation coefficient (0.559) between WDT along a direction of $22.5^{\circ}$ and at EN2. Finally, in the case of Type 5, there was the largest correlation coefficient (0.945) between WDT along a direction of $315^{\circ}$ and at SE1, representing the largest coefficient among the types. It was found that surface wind directions with the highest correlations to precipitation in the Yeongdong coastal area on winter season were varied according to surface pressure patterns, and that the correlations between WDT and precipitation were higher than those between AST850 and precipitation.

The Study of Periodicity of Annual Precipitation And Annual Temperature By The Periodic Function (주기성 함수를 이용하여 연강우와 연기온변화의 주기발견에 관한 연구)

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.6 no.1
    • /
    • pp.737-749
    • /
    • 1964
  • This is an attempt to find out the periodicity of the natural hydrological phenomena by the function of vibration periodicity, under the assumption that the phenomena are periodic. The result of this study at Suwon is as foIlows: 1. Annual precipitation and tota1 precipitation during summer season have the periodicity of five years. 2. Annual temperature and tota1 temperature during winter season have the periodicity of seven years. 3. The regulation curve equations of the above vibration phenomena are as foIlows: a Annual precipitation. Y = 1149-250cos2/5${\PI}$t-33 sin 2/5 t b. Total precipitation during summer season. Y=212'.9+33.06sin (2/5${\PI}$t+$88^{\circ}$13') c. Annual temperature. Y= 140.3+3.3 sin (2/7${\PI}$t+ $154^{\circ}C$55')

  • PDF

The Effects of Mass-size Relationship for Snow on the Simulated Surface Precipitation (눈송이의 크기와 질량 관계가 지표 강수 모의에 미치는 영향)

  • Lim, Kyo-Sun Sunny
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • This study presented the effects of the assumed mass-size relationship for snow on the simulated surface precipitation by using cloud microphysics parameterizations in Weather Research and Forecasting (WRF) model. The selected cloud microphysics parameterizations are WRF Double-Moment 6-class (WDM6) and WRF Single-Moment 6-class (WSM6) in the WRF model. We replaced the mass-size relationship for snow in WDM6 and WSM6 with Thompson's mass-size relationship retrieved from measurement data. The sensitivity of the modified WDM6 and WSM6 was tested for the idealized 2-dimensional squall line and winter precipitation system over the Korean peninsula, respectively. The modified WDM6 and WSM6 resulted in the increase of graupel/rain mixing ratios and the decrease of snow mixing ratio in the low atmosphere. The changes of hydrometeor mixing ratio and surface precipitation could be due to the collision-coalescence process between raindrops and snow and the graupel melting process.

Current and Future Changes in the Type of Wintertime Precipitation in South Korea (현재와 미래 우리나라 겨울철 강수형태 변화)

  • Choi, Gwang-Yong;Kwon, Won-Tae
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.1
    • /
    • pp.1-19
    • /
    • 2008
  • This study intends to clarify the characteristics and causes of current changes in wintertime precipitation in Korea and to predict the future directions based on surface observational $(1973/04\sim2006/07)$ and modeled (GFDL 2.1) climate data. Analyses of surface observation data demonstrate that without changes in the total amount of precipitation, snowfall in winter (November-April) has reduced by 4.3cm/decade over the $1973\sim2007$ period. Moreover, the frequency and intensity of snowfall have decreased; the duration of snow season has shortened; and the snow-to-rain day ratio (STDR) has decreased. These patterns indicate that the type of wintertime precipitation has changed from snow to rain in recent decades. The snow-to-rain change in winter is associated with the increases of air temperature (AT) over South Korea. Analyses of synoptic charts reveal that the warming pattern is associated with the formation of a positive pressure anomaly core over northeast Asia by a hemispheric positive winter Arctic Oscillation (AO) mode. Moreover, the differentiated warming of AT versus sea surface temperature (SST) under the high pressure anomaly core reduces the air-sea temperature gradient, and subsequently it increases the atmospheric stability above oceans, which is associated with less formation of snow cloud. Comparisons of modeled data between torrent $(1981\sim2000)$ and future $(2081\sim2100)$ periods suggest that the intensified warming with larger anthropogenic greenhouse gas emission in the $21^{st}$ century will amplify the magnitude of these changes. More reduction of snow impossible days as well as more abbreviation of snow seasons is predicted in the $21^{st}$ century.