• Title/Summary/Keyword: Wing variation

Search Result 84, Processing Time 0.027 seconds

Effect of wing width and thickness on the polarization characteristics of vertical directional couplers using the Double-Sided Deep-Ridge waveguide structure (Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 날개구조부 폭과 두께가 편광 특성에 미치는 영향)

  • 정병민;윤정현;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • We investigate the effect of the wing width and thickness of a Double-Sided Deep-Ridge(DSDR) vertical directional coupler on the coupling length dependent on the polarization, We have found that the DSDR vertical directional coupler without a wing does not have polarization independent coupling lengths. The variation of the coupling length of TE and TM modes and the difference between the coupling lengths of the two modes are negligible as the wing width increases beyond the specific wing width for the same wing thickness. Thus, we can see that a DSDR vertical directional coupler has a wing width larger than the minimum wing width to obtain the polarization independent coupling length. The minimum wing width increases as the wing thickness increases for the same core thickness and as the core thickness decreases for the same wing width. Also, we have found that the minimum wing thickness is determined by the core thickness and the minimum wing thickness decreases as the core thickness increases.

A Study on Longitudinal Flight Dynamics of a QTW UAV (QTW 무인항공기의 종축 비행동역학에 관한 연구)

  • Jung, Ji In;Hong, Sung Tae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • A Quad Tilt Wing UAV is a new concept hybrid UAV having the advantages of both fixed-wing and rotary-wing aircraft. This paper presents longitudinal flight dynamic characteristics of a Quad Tilt Wing UAV. The designed Quad Tilt Wing UAV is a configuration of a tandem wing type aircraft with an actuating motor and propeller mounted at each wing. Momentum theory is used to calculate the thrust, and nonlinear modeling is performed considering lift and drag generated by slip stream effect of propellers. Also, Force and moment variation at each tilting angle is considered. Static trim on longitudinal axis is analyzed via numerical simulation. Componentwise force contribution was analyzed at each trim mode. Dynamic characteristics were evaluated through eigenvalue analysis for a linear model at each flight mode. It is verified that longitudinal dynamic characteristics are changing from unstable to stable state by continuous transition of dominant poles.

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

Flutter characteristics of a Composite Wing with Various Ply Angles (복합재료날개의 적층각에 대한 플러터 특성 연구)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.126-130
    • /
    • 2000
  • In this study, flutter characteristics of a composite wing have been studied for the variation of laminate angles in the subsonic, transonic and supersonic flow regime. The laminate angles are selected by the aspect of engineering practice such as 0, $\pm$45 and 90 degrees. To calculate the unsteady aerodynamics for flutter analysis, the Doublet Lattice Method(DLM) in subsonic flow and the Doublet Point Method(DPM) in supersonic flow are applied in the frequency domain. In transonic flow, transonic small disturbance(TSD) code is used to calculate the nonlinear unsteady aerodynamics in the time domain. Aeroelastic governing equation has been solved by v-g method in the frequency domain and also by Coupled Time-Integration Method(CTIM) in the time domain. from the results of present study, characteristics of free vibration responses and aeroelastic instabilities of a composite wing are presented for the set of various lamination angles in the all flow range.

  • PDF

Variations in the Seed Production of Pinus densiflora Trees

  • Kang, Hye-Soon
    • Animal cells and systems
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 1999
  • Current data on reproductive characters of endemic and native species are essential to provide a strategy for the conservation of these species. Red pine (Pinus densiflora Sieb. & Zucc.) is one of the dominant, native tree species in Korea, but its reproductive ecology is not well-known. In 1997, the pattern of variation in cone and seed yields contributing to the conservation of declining populations of red pines was examined. Plant height and dbh were measured, and several new cones were collected from each tagged tree after counting the number of cones on each tree. For a subset of cones sampled, the number of fertile scales, the number of seeds at three development stages (early/late aborted, and filled seed), seed wing size, wing color, and individual filled seed mass were measured. The three sites which differed significantly in mean plant size also differed in mean cone and seed production per plant. However further analyses showed that most variation in characters examined occurred among plants within sites, but not among sites. An average of 90% of the potential seeds on the cones aborted at an early developmental stage, demonstrating that early abortion is a major factor affecting the number of filled seeds per cone. Individual seed mass was the only character which exhibited significant variations among sites as well as among trees within sites. Individual seed mass was overall negatively correlated with both the percentage of late abortion and the number of old cones per plant, suggesting that both the past and current years' reproductive activities have caused variations in seed mass. The potential dispersal distance of red pine seeds is quite large. However, wing loading was correlated with seed mass and number in a complex pattern across the sites. Distribution of seeds with varied colored wings differed among sites and among trees within sites. These results suggest that red pines at different sites might possess different strategies to cope with selection pressures acting during the final phase of reproduction, from seed dispersal to establishment. Then the ‘fitted’ red pine trees at each site should be identified and managed to conserve or restore populations.

  • PDF

Dispersal Polymorphisms in Insects-its Diversity and Ecological Significance (곤충의 분산다형성-그의 다양성과 생태학적 의의)

  • 현재선
    • Korean journal of applied entomology
    • /
    • v.42 no.4
    • /
    • pp.367-381
    • /
    • 2003
  • Dispersal polymorphism in insects Is a kind of adaptive strategy of the life history together with the diapause, consisting of the “long-winged or alate forms” of migratory phase and the “short-winged or apterous forms” of stationary phase. Dispersal polymorphism is a polymorphism related with the flight capability, and has three categories ; the wing polymorphisms, flight muscle polymorphisms, and flight behavior variations. Phase variation is another type of dispersal polymorphism varying in morphology, physiology and wing forms in response to the density of the population. The dispersal migration is a very adaptive trait that enables a species to keep pace with the changing mosaic of its habitat, but requires some costs. In general, wing reduction has a positive effect on the reproductive potential such as earlier reproduction and larger fecundity The dispersal polymorphism is a kind of optimization in the evolutionary strategies of the life history in insects; a trade-off between the advantages and disadvantages of migration. Wing polymorphism is a phenotypically plastic trait. Wing form changes with the environmental conditions even though the species is the same. Various environmental factors have an effect on the dispersal polymorphisms. Density dependent dispersal polymorphism plays an important role In population dynamics, but it is not a simple function of the density; the individuals of a population may be different in response to the density resulting different outcomes in the population biology, and the detailed information on the genotypic variation of the individuals in the population is the fundamental importance in the prediction of the population performances in a given environment. In conclusion, the studies on the dispersal polymorphisms are a complicated field in relation with both physiology and ecology, and studies on the ecological and quantitative genetics have indeed contributed to understanding of its important nature. But the final factors of evolution; the mechanisms of natural selections, might be revealed through the studies on the population biology.

Unsteady Aerodynamic Analysis of the Wing with Flaperon Flying over Nonplanar Ground Surface (비평면 지면 효과를 받는 플래퍼론이 있는 날개의 비정상 공력해석)

  • Joung, Yong-In;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.369-374
    • /
    • 2007
  • Unsteady aerodynamic characteristics of the wing with flaperon flying over nonplanar ground surface are investigated using a boundary-element method. The time-stepping method is used to simulate the wake shape according to the motion of the wing and flaperon over the surface or in the channel. The aerodynamic coefficient according to the periodic motion of the flaperon is shown as the shape of loop. The rolling moment coefficient of the wing flying in the channel is same as that of the wing flying over the ground surface. The variation range of pitching moment is wider when the wing flies in the channel than over the ground surface. The present method can provide various aerodynamic derivatives to secure the stability of superhigh speed vehicle flying over nonplanar ground surface using the present method.

Unsteady Lift Measurements of the Dragonfly-type Wing (잠자리 유형 날개의 비정상 양력 측정)

  • Kim, Song-Hak;Jang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • Unsteady lift measurements were carried out in order to investigate the effects of phase difference and reduced frequency of a dragonfly-type model with two pairs of wing. A load-cell was employed to measure the lift generated by a plunging motion of the dragonfly-type model with the incidence angles of 0$^{circ}$. Experimental conditions are as follows: phase differences between fore- and hind-wings are 0$^{circ}$, 90$^{circ}$, 180$^{circ}$, and 270$^{circ}$, and reduced frequencies are 0.075, 0.15 and 0.225, respectively. The freestream velocity was 143 m/sec and corresponding chord Reynolds number was $3.4{\times}10^3$. The variation of phase-averaged lift coefficients during one cycle of the wing motion is presented. Results show that the total value of the positive lift coefficient during one cycle of the wing motion is the largest at the phase difference of 90$^{circ}$, and that the maximum lift coefficient and lift coefficient per unit of time increases with reduced frequency.

  • PDF

Analysis of the Influence of Ground Effect on the Aerodynamic Performance of a Wing Using Lifting-Line Method (양력선 방법을 이용한 지면효과가 날개의 공력성능에 미치는 영향 분석)

  • Lee, Chang Ho;Kang, Hyung Min;Kim, Cheolwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.298-304
    • /
    • 2014
  • The lifting-line method based on Weissinger's method is extended to be able to analyze the ground effect. The method is applied to predict the variation of aerodynamic performance due to ground effect for the elliptic wing with aspect ratio of 10 and the wing of human powered aircraft. While the vortex strength of the wing increases slightly, the downwash decreases significantly as the wing approaches to the ground. For the wing of human powered aircraft, the increment of lift at the height of 2m is 5% than the lift outside the influence of ground effect. The decrease of induced drag at the height of wing span is 10% and at the height of 2m is 55% than that out of ground effect.

Multi-Point Aerodynamic Design Optimization of DLR F-6 Wing-Body-Nacelle-Pylon Configuration

  • Saitoh, Takashi;Kim, Hyoungjin;Takenaka, Keizo;Nakahashi, Kazuhiro
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.403-413
    • /
    • 2017
  • Dual-point aerodynamic design optimization is conducted for DLR-F6 wing-body-nacelle-pylon configuration adopting an efficient surface mesh movement method for complex junction geometries. A three-dimensional unstructured Euler solver and its discrete adjoint code are utilized for flow and sensitivity analysis, respectively. Considered design conditions are a low-lift condition and a cruise condition in a transonic regime. Design objective is to minimize drag and reduce shock strength at both flow conditions. Shape deformation is made by variation of the section shapes of inboard wing and pylon, nacelle vertical location and nacelle pitch angle. Hicks-Henne shape functions are employed for deformation of the section shapes of wing and pylon. By the design optimization, drag coefficients were remarkably reduced at both design conditions retaining specified lift coefficient and satisfying other constraints. Two-point design results show mixed features of the one-point design results at low-lift condition and cruise conditions.