Variations in the Seed Production of Pinus densiflora Trees

  • Kang, Hye-Soon (Department of Biology, College of Natural Sciences, Sungshin Women's University)
  • Published : 1999.03.01

Abstract

Current data on reproductive characters of endemic and native species are essential to provide a strategy for the conservation of these species. Red pine (Pinus densiflora Sieb. & Zucc.) is one of the dominant, native tree species in Korea, but its reproductive ecology is not well-known. In 1997, the pattern of variation in cone and seed yields contributing to the conservation of declining populations of red pines was examined. Plant height and dbh were measured, and several new cones were collected from each tagged tree after counting the number of cones on each tree. For a subset of cones sampled, the number of fertile scales, the number of seeds at three development stages (early/late aborted, and filled seed), seed wing size, wing color, and individual filled seed mass were measured. The three sites which differed significantly in mean plant size also differed in mean cone and seed production per plant. However further analyses showed that most variation in characters examined occurred among plants within sites, but not among sites. An average of 90% of the potential seeds on the cones aborted at an early developmental stage, demonstrating that early abortion is a major factor affecting the number of filled seeds per cone. Individual seed mass was the only character which exhibited significant variations among sites as well as among trees within sites. Individual seed mass was overall negatively correlated with both the percentage of late abortion and the number of old cones per plant, suggesting that both the past and current years' reproductive activities have caused variations in seed mass. The potential dispersal distance of red pine seeds is quite large. However, wing loading was correlated with seed mass and number in a complex pattern across the sites. Distribution of seeds with varied colored wings differed among sites and among trees within sites. These results suggest that red pines at different sites might possess different strategies to cope with selection pressures acting during the final phase of reproduction, from seed dispersal to establishment. Then the ‘fitted’ red pine trees at each site should be identified and managed to conserve or restore populations.

Keywords