• Title/Summary/Keyword: Wing Box

Search Result 28, Processing Time 0.022 seconds

Nonlinear Shell Finite Element and Parallel Computing Algorithm for Aircraft Wing-box Structural Analysis (항공기 Wing-box 구조해석을 위한 비선형 쉘 유한요소 및 병렬계산 기법 개발)

  • Kim, Hyejin;Kim, Seonghwan;Hong, Jiwoo;Cho, Haeseong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.565-571
    • /
    • 2020
  • In this paper, precision and efficient nonlinear structural analysis for the aircraft wing-box model is developed. Herein, nonlinear shell element based on the co-rotational (CR) formulation is implemented. Then, parallel computing algorithm, the element-based partitioning technique is developed to accelerate the computational efficiency of the nonlinear structural analysis. Finally, computational performance, i.e., accuracy and efficiency, of the proposed analysis is evaluated by comparing with that of the existing commercial software.

Dynamic Equivalent Continuum Modeling of a Box-Beam Typed Wing (Box-Beam 형상 날개의 동적 등가연속체 모델링에 관한 연구)

  • 이우식;김영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2704-2710
    • /
    • 1993
  • A simple and straightforward method is introduced for developing continuum beam-rod model of a box-beam typed aircraft wing with composite layered skin based on "energy equivalence." The equivalent continuum structral properties are obtained from the direct comparison of the reduced stiffness and mass matrices for box-beam typed wing with those for continuum beam-rod model. The stiffness and mass matrices are all represented in terms of the continuum degrees-of freedom defined in this paper. The finite-element method. The advantage of the present continuum method is to give every continuum structural properties including all possible coupling terms which represent the couplings between different deformations. To evaluate the continuum method developed in this paper, free vibration analyses for both continuum beam-rod and box-beam are conducted. Numerical tests show that the present continuum method gives very reliable structural and dynamic properties compared to the results by the conventional finite-element analysis. analysis.

Basic Design of Composite Wing Box for Light Aircraft (소형 항공기 복합재 주익 구조의 기본 설계)

  • Park, Sang-Yoon;Doh, Hyun-Il;Hwang, Myoung-Sin;Eun, Hee-Bong;Choi, Won-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.74-81
    • /
    • 2004
  • In this study preliminary structural design has been performed to develop an all composite wing box for experimental aircraft(classified in FAR Part 21). Considerations on composite materials and their manufacturing process were taken into account throughout the design phase. Aerodynamic loads were estimated by using Shrenk method(NACA TM No 948) and FAR Part 23 Appendix A. The structural layout has been determined to carry effectively the critical loads and to maximize the benefit of composite structure. Maximum strain failure allowable and first ply failure criteria were applied for the sizing of major structural members. Finally, the designed composite wing box structure is presented in the form of drawings, which include material specifications, stacking sequences and joint design.

Static Test and Analysis of Wing Support Structure for External Stores (외부장착물지지 주익구조 정적 시험 및 해석)

  • Uhm, Wonseop;Yoon, Jongmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Armed aircraft of a basic trainer class installs external stores under wing box by using pylon and performs an operation such as weapon delivery and jettison, and should be designed to withstand all kinds of loads applied to external stores. The static strength test of pylons and wing box was performed to assess the static strength of pylon and their support structures for substantiation. Based on the test, the structures were verified to fully satisfy a given design requirement. In this paper, methods of test load generation of wing box and pylon, evaluation of test result data and design result of test set-up were presented. Comparing the FEM analysis with the same test data can lead to good match and reasonable deviation between both. Finally, based on the test and the analysis, the static strength of test article was substantiated and the reliability and effectiveness of analysis math model were obtained.

Aeroelastic Analyses of Aircraft Wing by Using Equivalent Continuum BeamalRod Model (등가연속체 Beam-Rod 모델을 이용한 항공기 날개의 공력탄성 해석)

  • Lee, U-Sik;Lee, Hang
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.615-622
    • /
    • 1995
  • It may be inefficient to conduct the aeroelastic analysis by using full-scale conventional finite-element analyses or experiments, from the initial design phase, for an aircraft wing which can be considered as the discontinuum complex structure with composite laminated skins. In this paper, therefore more efficient aeroelastic analysis has been conducted for a box-beam typed aircraft wing by using the equivalent continuum beam-rod model which is derived from the concept of energy equivalence. Equivalent structural properties of the continuum beam-rod model are obtained from the direct comparison of the finite-element matrices of continuum beam-rod model with those of box-beam typed aircraft wing. Numerical results by the continuum beam-rod model approach are compared with those by the conventional finite-element analysis approach to show that the continuum beam-rod model proposed herein is quite satisfactory as a simplified model of aircraft wing structure for aeroelastic analyses.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

Optimal Design of the Composite Hat-shaped Stiffeners for Simplified Wing Box with Embedded Array Antenna (어레이 안테나 장착을 위한 단순화된 주익 구조의 복합재 모자형 보강재 최적설계)

  • Park, Sunghyun;Kim, In-Gul;Lee, Seokje;Jun, Oo-Chul
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.224-229
    • /
    • 2012
  • The structural performance is degraded in case of embedding the array antenna for reconnaissance and surveillance into the wing skin structures. In this paper, the optimal design for the thickness of composite hat-shaped stiffener which is reinforced embedded array antenna on the simplified composite wing box was conducted. To select the basic shape of hat-shaped stiffener, structural analysis was carry out using the commercial finite element analysis program while changing the web slope and flange length of hat-shaped stiffener. The optimal thickness of the composite hat-shaped stiffeners was determined by using commercial optimization program such as VisualDOC and commercial FEA program with considering stresses and buckling constraints.

A Study of Flutter Analysis for the Composite Box Wings with Various Laminates (다양한 적층각에 대한 상자형 복합재료 날개의 플러터 특성연구)

  • Chung, Y.H.;Kwon, H.J.;Kim, D.H.;Lee, I.;Kim, C.G.
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this study, the flutter analysis for a rectangular box wing and an actual fighter wing with composite shin, aluminum spar and aluminum rib has been conducted. A conservative 3D wing-box model of an actual wing is modeled by MSC/PATRAN and the corresponding free vibration analysis has been performed by MSC/NASTRAN. The finite elements of membrane, rod and shear panel are used. Using the practical ply angles, various composite laminates are composed and analysed. The DLM code which is linear aerodynamic theory in frequency domain is applied to calculate unsteady aerodynamic pressure in subsonic flow region and the V-g and p-k methods are applied to obtain the solution of aeroelastic governing equation in frequency domain.

Equivalent Plate Modeling of the Wing-Box Structure with Control Surface

  • Kim, Eun-Ho;Roh, Jin-Ho;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.104-109
    • /
    • 2006
  • In this study, the equivalent plate model is developed using a finite element method(FEM) based on the first order shear deformation theory(FSDT). The substructure synthesis method is used to consider the control surface. For the verification of the equivalent model, the results of free vibration analysis are compared with the ones of 3D wing structure modeled by using the MSC/NASTRAN.