• Title/Summary/Keyword: Windshield

Search Result 96, Processing Time 0.033 seconds

APCVD Process of SnO2 Thin-Film on Glass for Transparent Electrodes of Large-Scale Backplanes (대면적 기판의 투명 전극용 SnO2 박막 증착을 위한 APCVD 공정)

  • Kim, Byung-Kuk;Kim, Hyunsoo;Kim, Hyoung June;Park, Joonwoo;Kim, Yoonsuk;Park, Seungho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Tin oxide thin-films have been widely applied in various fields of high-technology industries due to their excellent physical and electric properties. Those applications are found in various sensors, heating elements of windshield windows, solar cells, flat panel displays as tranparent electrodes. In this study, we conducted an experiment for the deposition of $SnO_2$ on glass of 2nd Gen. size for the effective development of large-scale backplanes. As deposition temperatures or flow rates of the $SnCl_4$ as a precursor changed, the thickness of tin oxide thin-films, their sheet resistances, transmittances, and hazes varied considerably.

Predicting Noise inside a Trimmed Cavity Due to Exterior Flow (외부 유동에 의한 흡차음재 공간내의 소음 예측)

  • Jeong, ChanHee;Ganty, Bastien;Choi, EuiSung;Cho, MunHwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.466-471
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using PowerFlow. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran. Additionally in order to validate the numerical process, an experimental set-up has been created based on the simplified vehicle. The vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

Effectiveness of Active Hood and Pedestrian Protection Airbag Based on Real Vehicle Impact Test (실차평가시험을 기반으로 한 액티브 후드 및 보행자 보호 에어백 효과)

  • Yun, Yong-Won;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • Pedestrian to vehicle traffic accidents show a very high mortality rate compared to the frequency of occurrence. In order to improve the pedestrian protection performance of the vehicle, the korean government added a "pedestrian safety" entry from the year 2007. The performance for pedestrian protection of current vehicles gradually improved compared to the past, but it is still insufficient. It was found that the pedestrian protection performance was very weak, such as the top of the bonnet, the A-pillar and under the front windshield. A application of an active hood and pedestrian protection airbags can be countermeasures for these weak points of pedestrian safety. The active hood and pedestrian protection airbags are designed and manufactured to apply to the top of the hood and to the bottom of the windshield. The manufactured system is equipped in a test vehicle and evaluated based on the Korea New Car Assessment Program(KNCAP) test procedures for the performance of pedestrian safety. As a result, the outstanding effect of pedestrian protection has been achieved by the active hood and the pedestrian protection airbag. The rates of pedestrian injury are reduced by 82.2% and 95.4%, respectively.

External Flow and Cabin Interior Noise Analysis of Hyundai Simple Model by Coupling CAA++ and ACTRAN

  • Kim, Young Nam;Chae, Jun Hee;Jachmot, Jonathan;Jeong, Chan Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.291-291
    • /
    • 2013
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. HMC is interested in the numerical prediction of this aerodynamic noise generated by the car windows with the final objective of improving the products design and reducing this noise. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using the CAA(Computational aeroacoustics) solver CAA++. The second step consists in the computation of the vibro-acoustic transmission through the side window using the finite element vibro-acoustic solver Actran. The internal air cavity including trim component are included in the simulation. In order to validate the numerical process, an experimental set-up has been created based on a generic car shape. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. First, this paper describes the method including the CAA and the vibro-acoustic models, from the boundary conditions to the different components involved, like the windows, the trims and the car cavity is detailed. In a second step, the experimental set-up is described. In the last part, the vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

Numerical Analysis of Icing and Condensation Mechanism sing Enthalpy Method (엔탈피방법을 이용한 결빙 및 응축 메커니즘 해석)

  • Kim, S.H.;Heo, M.W.;Park, W.G.;Jung, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2901-2906
    • /
    • 2007
  • A solver for icing and condensation of water has been developed. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change from water to ice of the driven cavity were calculated. Also, the melting process of the frost on the windshield glass of an automobile has been simulated. The calculation showed a good agreement with analytical solution and other numerical results. Using the present validated code, the condensation of water vapor has been first tried. The computed results provided some physical features of condensation phenomena even though experimental data and other numerical data were not available. For future work, it is recommended to throughly investigate the effects of boundary conditions on the solution.

  • PDF

Flow Analysis due to the Slant Angle of a Windscreen at the Front of a Car Body (차체 전방의 앞 유리 경사각도에 따른 유동해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.9-14
    • /
    • 2020
  • In this study, CFX analyses were performed with flow models to minimize the flow resistance due to the windscreen on the front of a car body. The results indicated that the greater the slant angle of the windshield, the greater the maximum pressure area. The lower the slant angle of the windscreen, the smaller the area in which the air collides with the front of the car body and the more smoothly the air moves. The results of this study can be applied to increase fuel economy under driving conditions by changing the slant angle of the vehicle's windscreen.

Basic Experiment Using Taguchi method for Vertical Wind Turbine with Wind-shield (다구찌 기법을 이용한 윈드실드 수직축 풍력 터빈의 기초 실험 연구)

  • Hong, Cheol-Hyun;Seo, Seong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.85-89
    • /
    • 2011
  • This study aimed to develop a wind turbine system for the domestic wind environments. The Taguchi method was applied to obtain the optimal design for a wind turbine with a wind-shield. The design parameters were defined to look for the shape of the wind turbine. Optimal parameters were determined on the basis of the analyzed level averages of the characteristics. According to the test results to which the optimal parameters were applied, the rpm improved. It was also found that a windshield 3/4 the size contributes to improving the efficiency of existing turbines.

Dynamic Behavior of an Electric Sun Visor for Automotive Windshields (차량 윈드실드용 전동 선바이저의 동특성 연구)

  • Lee, Suk Woo;Kim, Kwon Hee;Kim, Jung Hoon;Han, Jae Woong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.857-864
    • /
    • 2016
  • In this study, we proposed a novel concept of electric sun visor comprising a dark, see-through sun shade material that ensures unimpaired driver's vision with continuous control of the shade position. The shade extending from the windshield base along its surface may be subjected to severe vibration during driving unless the design parameters are carefully selected. A prototype was tested to collect acceleration data during driving. Based on the test data, an ADAMS dynamics model was validated. The mechanism of sun visor was optimized to minimize vibration based on the dynamics model, experimental design, and response surface method.

Calculation of three-dimensional boundary layer near the plane of symmetry of an automobile configuration (자동차 중앙대칭단면 부근의 3차원경계층 계산)

  • 최장섭;최도형;박승오
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-69
    • /
    • 1988
  • The finite-difference three-dimensional boundary layer procedure of Chang and Patel is modified and applied to solve the boundary layer development on the automobile surface. The inviscid pressure distribution needed to solve the boundary layer equations is obtained by using a low order panel method. The plane of symmetry boundary layer exhibits the strong streamline divergence up to the midbody and convergence thereafter. The streamline divergence in front of the windshield helps the boundary layer to overcome the sever adverse pressure gradient and avoid the separation. The relaxation of the pressure right after the top of the wind-shield, on the other hand, makes the overly thinned boundary layer to readjust and prompts the streamlines to converge into the symmetry plane before the external streamlines do. The three-dimensional characteristics are less apparent after the midbody and the boundary layer is similar to that of the two-dimensional flow. The results of the off-plane-of-symmetry boundary layer are also presented.

  • PDF

NEW OPTICALLY TRANSPARENT MATERIALS FOR TRANSPARENT ELECTRONICS AND DISPLAYS

  • Ju, Sang-Hyun;Liu, Jun;Li, Jianfeng;Chen, Po-Chiang;Zhou, Chongwu;Facchetti, Antonio;Janes, David B.;Marks, Tobin J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.973-974
    • /
    • 2008
  • Optically transparent and flexible electronic circuits and displays are attractive for next-generation visual technologies, including windshield displays, head-mounted displays, and transparent screen monitors. Here we report on the fabrication of transparent transistors and circuits based on the combination of nanoscopic dielectrics and organic, inorganic, or hybrid semiconductors. Furthermore, the first demonstration of a transparent and flexible AMOLED display driven solely by $In_2O_3$ nanowire transistors (NWTs) is reported. The display region exhibits an optical transmittance of ~35% and a green peak luminance of ${\sim}300\;cd/m^2$. These results indicate that NWT-based drive circuits are attractive for fully transparent display technologies.

  • PDF