• Title/Summary/Keyword: Window-Based Image Processing

Search Result 96, Processing Time 0.019 seconds

AAW-based Cell Image Segmentation Method (적응적 관심윈도우 기반의 세포영상 분할 기법)

  • Seo, Mi-Suk;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.99-106
    • /
    • 2007
  • In this paper, we present an AAW(Adaptive Attention Window) based cell image segmentation method. For semantic AAW detection we create an initial Attention Window by using a luminance map. Then the initial AW is reduced to the optimal size of the real ROI(Region of Interest) by using a quad tree segmentation. The purpose of AAW is to remove the background and to reduce the amount of processing time for segmenting ROIs. Experimental results show that the proposed method segments one or more ROIs efficiently and gives the similar segmentation result as compared with the human perception.

A Reduction Method of Over-Segmented Regions at Image Segmentation based on Homogeneity Threshold (동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법)

  • Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • In this paper, we propose a novel method to solve the problem of excessive segmentation out of the method of segmenting regions from an image using Homogeneity Threshold($H_T$). The algorithm of the previous image segmentation based on $H_T$ was carried out region growth by using only the center pixel of selected window. Therefore it was caused resulting in excessive segmented regions. However, before carrying region growth, the proposed method first of all finds out whether the selected window is homogeneity or not. Subsequently, if the selected window is homogeneity it carries out region growth using the total pixels of selected window. But if the selected window is not homogeneity, it carries out region growth using only the center pixel of selected window. So, the method can reduce remarkably the number of excessive segmented regions of image segmentation based on $H_T$. In order to show the validity of the proposed method, we carried out multiple experiments to compare the proposed method with previous method in same environment and conditions. As the results, the proposed method can reduce the number of segmented regions above 40% and doesn't make any difference in the quality of visual image when we compare with previous method. Especially, when we compare the image united with regions of descending order by size of segmented regions in experimentation with the previous method, even though the united image has regions more than 1,000, we can't recognize what the image means. However, in the proposed method, even though image is united by segmented regions less than 10, we can recognize what the image is. For these reason, we expect that the proposed method will be utilized in various fields, such as the extraction of objects, the retrieval of informations from the image, research for anatomy, biology, image visualization, and animation and so on.

Design and Implementation of Depth Image Based Real-Time Human Detection

  • Lee, SangJun;Nguyen, Duc Dung;Jeon, Jae Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.212-226
    • /
    • 2014
  • This paper presents the design and implementation of a pipelined architecture and a method for real-time human detection using depth image from a Time-of-Flight (ToF) camera. In the proposed method, we use Euclidean Distance Transform (EDT) in order to extract human body location, and we then use the 1D, 2D scanning window in order to extract human joint location. The EDT-based human extraction method is robust against noise. In addition, the 1D, 2D scanning window helps extracting human joint locations easily from a distance image. The proposed method is designed using Verilog HDL (Hardware Description Language) as the dedicated hardware architecture based on pipeline architecture. We implement the dedicated hardware architecture on a Xilinx Virtex6 LX750 Field Programmable Gate Arrays (FPGA). The FPGA implementation can run 80 MHz of maximum operating frequency and show over 60fps of processing performance in the QVGA ($320{\times}240$) resolution depth image.

Automated assessment of cracks on concrete surfaces using adaptive digital image processing

  • Liu, Yufei;Cho, Soojin;Spencer, Billie F. Jr;Fan, Jiansheng
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.719-741
    • /
    • 2014
  • Monitoring surface cracks is important to ensure the health of concrete structures. However, traditional visual inspection to monitor the concrete cracks has disadvantages such as subjective inspection nature, associated time and cost, and possible danger to inspectors. To alter the visual inspection, a complete procedure for automated crack assessment based on adaptive digital image processing has been proposed in this study. Crack objects are extracted from the images using the subtraction with median filter and the local binarization using the Niblack's method. To adaptively. determine the optimal window sizes for the median filter and the Niblack's method without distortion of crack object an optimal filter size index (OFSI) is proposed. From the extracted crack objects using the optimal size of window, the crack objects are decomposed to the crack skeletons and edges, and the crack width is calculated using 4-connected normal line according to the orientation of the local skeleton line. For an image, a crack width nephogram is obtained to have an intuitive view of the crack distribution. The proposed procedure is verified from a test on a concrete reaction wall with various types of cracks. From the crack images with different crack widths and patterns, the widths of cracks in the order of submillimeters are calculated with high accuracy.

Implementation of Stereo Matching Algorithm using GPU (GPU를 이용한 스테레오 정합 알고리즘의 구현)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.583-588
    • /
    • 2011
  • In this paper, we propose an adaptive variable-sized matching window method using the characteristic points of the image and a method to increase the reliability of the cross-consistency check to raise the correctness of the final disparity image. The proposed adaptive variable-sized window method segments the image with the color information, finds the characteristic points inside the window. Also the proposed algorithm implement using a graphic processing unit(GPU). The GPU, we used in this paper is GeForce GTX296 (NVIDIA) and we can use programming based on CUDA. The calculation speed realizes a speed approximately 128 times faster than that of a CPU.

Enhancement of Stereo Feature Matching using Feature Windows and Feature Links (특징창과 특징링크를 이용한 스테레오 특징점의 정합 성능 향상)

  • Kim, Chang-Il;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.113-122
    • /
    • 2012
  • This paper presents a new stereo matching technique which is based on the matching of feature windows and feature links. The proposed method uses the FAST feature detector to find image features in stereo images and determines the correspondences of the detected features in the stereo images. We define a feature window which is an image region containing several image features. The proposed technique consists of two matching steps. First, a feature window is defined in a standard image and its correspondence is found in a reference image. Second, the corresponding features between the matched windows are determined by using the feature link technique. If there is no correspondence for an image feature in the standard image, it's disparity is interpolated by neighboring feature sets. We evaluate the accuracy of the proposed technique by comparing our results with the ground truth of in a stereo image database. We also compare the matching accuracy and computation time with two conventional feature-based stereo matching techniques.

Development of Tele-image Processing Algorithm for Automatic Harvesting of House Melon (하우스멜론 수확자동화를 위한 원격영상 처리알고리즘 개발)

  • Kim, S.C.;Im, D.H.;Chung, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.196-203
    • /
    • 2008
  • Hybrid robust image processing algorithm to extract visual features of melon during the cultivation was developed based on a wireless tele-operative interface. Features of a melon such as size and shape including position were crucial to successful task automation and future development of cultivation data base. An algorithm was developed based on the concept of hybrid decision-making which shares a task between the computer and the operator utilizing man-computer interactive interface. A hybrid decision-making system was composed of three modules such as wireless image transmission, task specification and identification, and man-computer interface modules. Computing burden and the instability of the image processing results caused by the variation of illumination and the complexity of the environment caused by the irregular stem and shapes of leaves and shades were overcome using the proposed algorithm. With utilizing operator's teaching via LCD touch screen of the display monitor, the complexity and instability of the melon identification process has been avoided. Hough transform was modified for the image obtained from the locally specified window to extract the geometric shape and position of the melon. It took less than 200 milliseconds processing time.

A Statistically Model-Based Adaptive Technique to Unsupervised Segmentation of MR Images (자기공명영상의 비지도 분할을 위한 통계적 모델기반 적응적 방법)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.286-295
    • /
    • 2000
  • We present a novel statistically adaptive method using the Minimum Description Length(MDL) principle for unsupervised segmentation of magnetic resonance(MR) images. In the method, Markov random filed(MRF) modeling of tissue region accounts for random noise. Intensity measurements on the local region defined by a window are modeled by a finite Gaussian mixture, which accounts for image inhomogeneities. The segmentation algorithm is based on an iterative conditional modes(ICM) algorithm, approximately finds maximum ${\alpha}$ posteriori(MAP) estimation, and estimates model parameters on the local region. The size of the window for parameter estimation and segmentation is estimated from the image using the MDL principle. In the experiments, the technique well reflected image characteristic of the local region and showed better results than conventional methods in segmentation of MR images with inhomogeneities, especially.

  • PDF

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

Image Edge Detection Applying the Toll Set and Entropy Concepts (톨연산과 엔트로피 개념에 기초한 화상의 경계선 추출)

  • Cho, Dong-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.471-477
    • /
    • 1996
  • An image edge detection method based on the toll set concept is proposed. Initially the edge structure is established for an image following human perception n model. Then toll set membership values are computed and the toll set intersection and union operators are applied to them. The final toll set membership values are normalized to get the vagueness degrees and the thresholding operation based on entropy concept is performed on them to determine the edge of an image.

  • PDF