• 제목/요약/키워드: Window

검색결과 5,727건 처리시간 0.028초

창의 경사도에 따른 열관류율 변화에 관한 연구 (A Study on the Change of Heat Transmission Coefficient According to the Degree of Windows Slope)

  • 황하진;이경희
    • 한국주거학회논문집
    • /
    • 제12권3호
    • /
    • pp.133-140
    • /
    • 2001
  • This study investigated the heat transmission coefficient through the experiment that the skylight, slope window of 60 degree and 30 degree consisted of pair glass and the double window of external window and internal window paper were suitable for heat insulation. As the result of experiment, the heat transmission coefficient of slope window was 1.06 times in the 60 degree, 1.18 times in the 30 degree and 1.31 times in the skylight as a standard lateral window. The heat transmission coefficient in the double window of external window and internal window paper was 3.017$\textrm{㎉}$/$\textrm{m}^2$.hr.$^{\cire}C$. The slope window was not suitable for the prescription by the increase of the heat transmission coefficient, so the user must pay attention to the treatment. This study investigated only the slope window of 12mm and 16mm pair glass and the double window of external window and internal window paper, study on the various pattern of window must be achived in a future.

  • PDF

방사성핵종(放射性核種) $^{131}I$$^{198}Au$에서 Window 폭(幅)에 따른 계수측정(計數測定)에 관(關)한 연구(硏究) (A Study of Counting Efficiency according to the Window-width on Radionuclides $^{131}I\;and\;^{198}Au$)

  • 박성옥
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제7권1호
    • /
    • pp.85-92
    • /
    • 1984
  • It is a esperimental report to investigation for optimum window-width on radionuclides $^{131}I\;and\;^{198}Au$ The obtained results were as follow; 1. In case of $^{131}I$, 1) The lowest counts produced at the window-width of 10KeV and 20KeV. 2) The count rate, more increased, when the window-width more opened, but the counting efficiency is very good between 70KeV and 130KeV window-width (19.23% -35.71% about the peak energy). 3) The heighest counting rate per KeV of window appeared at 130KeV window-width. 4) BKG counts increased proportionally to the wider window as 5.473 + 0.016 cpm. 2. In case of $^{198}Au$ 1) The lowest counts appeared at 10KeV and 20KeV window. 2) Count rate more increased, when window-width more opened, but the counting efficiency is very good between 80KeV and 140KeV window (19.46% - 34.06% about the peak energy). 3) The highest counting rate per KeV of the window appeared at 140KeV window. 4) BKG counts increased proportionally to the wider window-width as 4.74 + 1.09 cpm.

  • PDF

반투과형 태양전지를 이용한 창호형 BIPV 건물의 환경성능 분석 (Comparison assessment of semi-transparent solar cell for BIPV windows)

  • 정민희
    • 토지주택연구
    • /
    • 제11권1호
    • /
    • pp.87-94
    • /
    • 2020
  • To implement the planning of zero-energy buildings, their energy performance must be improved, and renewable energy applications must also be included. To accelerate the use of renewable energies in such buildings, BIPVs should be actively used in windows and on roofs. Window-type BIPVs are being developed in various forms depending on the size, composition, area ratio of the window, specification of glass, and so on. To analyze the applicability of various solar cells as window-type BIPVs, in this study, we evaluated their applicability, at the current development level, by analyzing the indoor illuminance, heat gain and heat loss; the cooling, heating, and lighting energy levels; and the generation performance of the various solar cells. To enhance the future applicability of window type BIPV, we analyze the overall energy performance of the building, according to changes in visible light transmittance and generation efficiency. The main research results are as follows. The area ratios above the standard illuminance, based on the window type and according to the VLT, were in order of low-e glazing, a-Si window, DSSC window, and c-Si window. The heat gain of the semi-transparent solar cell winodw was remarkably low. The energy consumption of buildings was highest in the order of c-Si window, DSSC window, a-Si window, and clear low-e window. However, in the case of including the power generation performance of the solar cell, the energy consumption was found to be high in order of DSSC window, c-Si window, a-Si window, and clear low-e window. In the future, if a window-type BIPV is developed, we believe that improvement in power generation performance and improvement in visible light transmittance will be needed.

방사성(放射性) 의약품(醫藥品) $^{131}I$$^{99m}Tc$에서 window폭(幅) 변화(變化)에 따른 계수(計數)의 변화비교(變化比較)에 관(關)한 검사(檢討) (A Study of Counting Efficiency according to the Window-width on Radionuclides $^{131}I$ and $^{99m}Tc$)

  • 박성옥
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제9권1호
    • /
    • pp.65-71
    • /
    • 1986
  • It is an experimental report about optimum window-width on radionuclides $^{99m}Tc$ and $^{131}I$ and obtained results as follows; 1. In case of $^{99m}Tc$, a) The difference of counting rate in each window-width is greater at the below 20% window than above 20% window-width. b) BKG counting is proportionated to the window-width. 2. In case of $^{131}I$, a) The counting rate increased according to the window-width but the increasing course is not equal in all window. The difference of counting rate is greater at the below of 20% window-width than above 20% window. b) BKG counting is proportionated to the window-width.

  • PDF

쇼 윈도우 디스플레이 이미지에 관한 연구 -부산지 역 의류매장을 중심으로- (A Study on the Image of Show Window Display - Based on Apparel Stores in Pusan -)

  • 노경혜;이경희
    • 한국의류학회지
    • /
    • 제21권7호
    • /
    • pp.1109-1116
    • /
    • 1997
  • This study was designed to investigate the image of show window displays. The specific objectives of the study are as follows; 1) Construct a semantic differential scale to evaluate the images of show window displays; 2) Identify the factor structure of the show window displays; 3) Cluster the brands according to the images of show window displays; 4) Examine how the images of show window displays differ according to the different brand clusters; and 5) Identify by brand clusters, how the different show window display images affect the purchasing desires. The following conclusions were made from this study; 1.25 pairs of adjectives for show window displays were found to include five factor dimensions (total variance 67.7%) such as evaluation, interest, hardness and softness, maturity, and modernity. 2. The brands were divided into six clusters according to the show window display images. 3. There were significant differences in the visual evaluation of the brand clusters in the show window display images. 4. There were significant differences in the show window display images that affect the Purchasing desires among the brand clusters.

  • PDF

창의 기울기에 따른 건축물 에너지 소비량 예측 (The Prediction of Energy Consumption by Window Inclination)

  • 조성우
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.27-32
    • /
    • 2011
  • Most of domestic building generally don't have fixed shading devices considering of appearance and aesthetic issues. In this study is suggested that tilt window simultaneously has a role of shading and blocking solar radiation. The tilt window thermal performance is investigated by relation ship between inclination and heating cooling road. As comparing vertical window with $5^{\circ}$ and $7^{\circ}$ of tilt window respectively, the heating load is increased by 3.6% and cooling load is reduced by 8.1% on $5^{\circ}$ tilt window and the heating load is increased by 5.3% and cooling load is reduced by 11.5% on $5^{\circ}$ tilt window. Especially, the total load of alternative tilt window is showed the reduction rate 2.6% and3.6% compared of vertical window. Therefore, the tilt window is possible to role of shading of solar radiation and reduction of heating and cooling load.

EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구 (A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus)

  • 김태호;고성호
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.

공기식 집열창 시스템이 설치된 건물의 동적부하 해석 (Time Dependent Thermal Load Analysis of the Building with an Airflow Window System)

  • 조성환;박상동
    • 설비공학논문집
    • /
    • 제4권2호
    • /
    • pp.82-95
    • /
    • 1992
  • It has been known that the application of an airflow window system reduces the energy consumption compared with conventional double pane window in a building. But how to analyze thermal load in a building with an airflow window system has not been well known. so two kinds of method (Mode 1 and Mode 2) to analyze time dependent thermal load of the building with an airflow window system are presented in this study. The results of load analysis about the model building(total area : $4521m^2$, 3 floors) by Mode 2 show that the maximum cooling and heating load in a building with an airflow window system are decreased about 12-17% and about 19.5% than with double pane glass window, and yearly energy consumption with an airflow window system is saved about about 20% than with double pane glass window.

  • PDF

현장측정을 통한 발코니 창호의 차음성능에 관한 연구 (Investigation of the sound insulation performance of balcony window through field measurement)

  • 주문기
    • KIEAE Journal
    • /
    • 제9권5호
    • /
    • pp.63-68
    • /
    • 2009
  • As with the disappearance of a living room window due to the trend in apartment housing construction that prefers a larger, expanded living room, the sound insulation performance of the balcony window is becoming an important factor to determine the level of indoor noise at an apartment unit. Considering that the indoor noise inside an apartment unit is mandated by law at or below 45dB(A), the balcony window is increasingly assuming an even more important role. Sound insulation performance of the window was measured by examining differences in data involving varying angles of incidence of the sound source as obtained from the same balcony window. Also, acoustic intensity measuring was performed at and around the window to determine its sound insulation quality. Results of measuring on the sound source's angles of incidence indicated that the performance showed some differences in lower frequency ranges, though with no significance. Intensity measuring results showed that the sound insulation performance was reduced near the connection part of the window and the window frame.

Double Vent 창호 시스템의 단열성능평가 (The Evaluation of Thermal Performance of Double Vent Window System)

  • 유승호;박진우;문현준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.557-560
    • /
    • 2008
  • Window system is an essential component for ventilation, lighting, and thermal environment in buildings. However, window system has the lowest insulation performance and may cause high energy consumptions, if it is not properly designed. Thus, performance of window systems play an important role in built environment. This study proposes a new window systems for balcony, which has double vents and analyses the thermal performance using an intergrated simulation method with Therm 6.1 and Widow 6.1. The result shows higher U-factor than conventional window systems. It is expected that the double vent window system can increase thermal performance and save energy in apartment houses.

  • PDF