• Title/Summary/Keyword: Winding Pattern

Search Result 72, Processing Time 0.022 seconds

Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding (필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Composite pressure vessels with HDPE (high density polyethlyne) liner with metal boss at each end were developed by Filament Winding Process. The vessel is composed of a dome-shaped part at each end and a cylinder-shaped part at the middle of the vessel. The environmental tests carried out for possible vessel materials such as High Density Polyethlyn (HDPE), resins and reinforcing fibers up to a year showed no significant damages. The boss was designed to minimize the gas leak which was verified by FEM analysis. Most ideal fiber tension was obtained by experimental method and the fiber volume fraction, $\textrm{V}_{f}$, obtained by image analyzer were 55.4 % in cylinder and 55.6 % in dome parts, respectively. Winding pattern is programmed to control the composite thickness in the dome areas such that the failure of the vessel may occur in the cylinder. During the cure, the vessel was rotated and a constant internal pressure of 0.62 bar was applied. From this, the vessel's burst pressure is improved by 28 %. The burst and fatigue tests for under-wound and fully wound vessel showed satisfactory results.

Studies on Reduction of Yarn Hairiness by Nozzles in Ring Spinning and Winding by Airflow Simulation

  • Rengasamy R. S.;Patnaik Asis;Punekar Hemant
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.317-322
    • /
    • 2006
  • Reduction of yam hairiness by nozzles in ring spinning and winding is a new approach. Simulation of the airflow pattern inside the nozzles provides useful information about actual mechanism of hairiness reduction. The swirling air current inside the nozzles is capable of wrapping the protruding hairs around the yam body, thereby reducing yam hairiness. Since production rate of winding is very high and the process itself increases yarn hairiness any method to reduce the hairiness of yarns at this stage is a novel approach. A CFD (computational fluid dynamics) model has been developed to simulate the airflow pattern inside the nozzles using Fluent 6.1 software. In this study, both S- and Z-type nozzles having an axial angle of 500 and diameter of 2.2 mm were used for simulation studies. To create a swirling effect, four air holes of 0.4 mm diameter are made tangential to the inner walls of the nozzles. S- and Z-twisted yams of 30 tex were spun with and without nozzles and were tested for hairiness, tensile and evenness properties. The total number of hairs equal to or exceeding 3 mm (i.e. the S3 values) for yam spun with nozzle is nearly 49-51 % less than that of ring yams in case of nozzle-ring spinning, and 15 % less in case of nozzle-winding, while both the yarn types show little difference in evenness and tensile properties. Upward airflow gives best results in terms of hairiness reduction for nozzle-ring and nozzle wound yams compared to ring yarns. Yarn passing through the centre of the nozzle shows maximum reduction in S3 values.

Effect of Filament Winding Methods on Surface Roughness and Fiber Volume Fraction of SiCf/SiC Composite Tubes (SiCf/SiC 복합체 튜브의 표면조도 및 섬유 부피 분율에 미치는 필라멘트 와인딩 방법의 영향)

  • Kim, Daejong;Lee, Jongmin;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.359-363
    • /
    • 2013
  • Silicon carbide and its composites are being considered as a nuclear fuel cladding material for LWR nuclear reactors because they have a low neutron absorption cross section, low hydrogen production under accident conditions, and high strength at high temperatures. The SiC composite cladding tube considered in this study consists of three layers, monolith CVD SiC - $SiC_f$/SiC composite -monolith CVD SiC. The volume fraction of SiC fiber and surface roughness of the composite layer affect mechanical and corrosion properties of the cladding tube. In this study, various types of SiC fiber preforms with tubular shapes were fabricated by a filament winding method using two types of Tyranno SA3 grade SiC fibers with 800 filaments/yarn and 1600 filaments/yarn. After chemical vapor infiltration of the SiC matrix, the surface roughness and fiber volume fraction were measured. As filament counts were changed from 800 to 1600, the surface roughness increased but the fiber volume fraction decreased. The $SiC_f$/SiC composite with a bamboo-like winding pattern has a smaller surface roughness and a higher fiber volume fraction than that with a zigzag winding pattern.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

Feature Extraction Technique for Insulation Fault of High Voltage Motor Stator Winding (고압전동기 고정자권선의 절연결함에 대한 특징추출기법)

  • Park Jae-Jun;Lee Sung-Young;Mun Dae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.976-983
    • /
    • 2006
  • Multi-resolution Signal Decomposition (MSD) Technique of Wavelet Transform has interesting properties of capturing the embedded horizontal, vertical and diagonal variations within an image in a separable form. This feature was exploited to identify individual partial discharge sources present in multi-source PD pattern, usually encountered during practical PD measurement. Employing the Daubechies wavelet, feature were extracted from the third level decomposed and reconstructed horizontal and vertical component images. These features were found to contain the necessary discriminating information corresponding to the individual PD sources and multi-PD soruces.

Off-Line PD Diagnosis for Stator Winding of Rotating Machines Using a UWB Sensor

  • Lwin, Kyaw-Soe;Park, Noh-Joon;Kim, Hee-Dong;Ju, Young-Ho;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.263-270
    • /
    • 2008
  • We studied partial discharge detection by sensing electromagnetic waves emitted from the partial discharge source in an HV Rotating Machine using a UWB sensor. In this study, we design a new type of compact low frequency UWB sensor based on micro-strip technology. We also perform many experiments of offline and dismantled testing compared with the existing HFCT on stator winding of the HV generator. We mention the detailed design of a new compact UWB sensor along with the time domain PRPD pattern and frequency domain results of partial discharge in the stator winding of a 6.6kV rotating machine by offline testing performed in a laboratory.

Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior (CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가)

  • Choi, Ji-Su;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.174-179
    • /
    • 2021
  • Currently, fluid transfer steel pipes take a lot of time and expense to maintain all facilities due to new construction and painting or corrosion and aging. Therefore, this study was conducted for designing a CFRP pipe structure with high corrosion resistance and chemical resistance as a substitute for steel pipes. The helical/hoop pattern was cross-laminated to improve durability, and HNT was added to suppress the moisture absorption phenomenon of the epoxy. The HNT/CFRP pipe was manufactured by a filament winding process, and performed a mechanical property test, and a moisture absorption test in distilled water at 70℃. As a result, the highest bending strength was obtained when the hoop pattern was laminated with a thickness equivalent to 0.6% of the pipe. The 0.5 wt% HNT specimen had the highest moisture absorption resistance. Also, the delamination phenomenon at the interlayer interface was delayed, resulting in the lowest strength reduction rate.

Analysis on the Hot-spot Temperature Location of a 24MVA Cast Resin Transformer by FEM (FEM을 이용한 24MVA 몰드변압기의 Hot-spot 위치 분석 연구)

  • Kim, Yong-Bae;Ha, Jung-Woo;Shin, Pan-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.26-32
    • /
    • 2012
  • This paper calculates the core and copper losses as heating sources of a 24MVA cast resin transformer, and analyzes the thermal distribution of the transformer to find out its hot-spot area by FEM program. Since the winding of the transformer is composed with many series and parallel circuits, the analyzing model of the winding is simplified and modelled by axi-symmetric domain. As the results, the maximum temperature is estimated by $137^{\circ}C$ in the upper part of the low-voltage winding. The maximum temperature has discrepancy of approximately $10^{\circ}C$, which is able to be considered as an acceptable error range in the design stage of power transformers. For the overall pattern of the temperature distribution is almost same as test results, the analyzing method can be a useful tool to find out a hot-spot area of the winding.

On-Line Detection of Shorted Turn in Generator Rotor Windings (발전기 회전자 권선의 운전중 층간단락 탐지)

  • Kim, Hui-Dong;Lee, Yeong-Jun;Park, Jong-Jeong;Ju, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 1999
  • During start up and shut down, the generator is rotating at a low speed and copper dusts cause arcing between the turns in the slot. Shorted turns occurred primarily by the movement of these copper dusts between individual windings in the generator rotor. Detection of shorted turns was performed in five gas turbine generators in two combined cycle power plants. Two types of permanent and temporary flux probes were used in this paper. These flux probes have been used to develop a methodology for detecting shorted turns in an operating generator's rotor. The flux probes sense the rotor winding slot leakage flux and produce a voltage proportional to the rate of change of the flux. This pattern of flux variation is the signature unique to each rotor winding. An appropriate waveform analysis technique canidentify the pole location, the slot number, and the number of shorted turns within each slot. Shorted turns in field winding of gas turbine generator(125.7 MVA) were detected to twelve turns on al total 190 turns.

  • PDF

Analysis of the Damage Patterns and Metal Structure of 3 Phase Mold Transformers to which Interlayer Short-circuits have Occurred (층간 단락된 3상 몰드변압기의 소손 패턴 및 금속 조직 해석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.86-91
    • /
    • 2010
  • The purpose of this study is to analyze the damage patterns and metal structure of 3 phase mold transformers collected from places where accidents have occurred. Compared to an oil-immersed transformer, a mold transformer has the advantage of requiring a smaller installation area and can be kept clean, while its disadvantages include the fact that abnormal symptoms of an accident are difficult to discover and its repair is impossible. The capacity of the mold transformers collected from places where accidents have occurred was 200kVA with primary voltages being F23,900V, R22,900V, 21,900V, 20,900V, 19,900V, etc., as well as secondary voltages being 380V, 220V, etc. It was found from the analysis on the diffusion of combustion in the damaged mold transformers that fire occurred first inside the U-phase primary winding and that carbonization and heat were diffused to V-phase and W-phase in V-pattern. In addition, from the analysis on the cross-sectional structure of the metal of the melted high voltage winding using a metallurgical microscope, it was found that the boundary surface, voids, and columnar structure were formed when an interlayer short-circuit had occurred Therefore, even though it is not possible to find the cause for the occurrence of an interlayer short-circuit at the inner side of the primary winding, it is thought that, due to the thermal energy generated when the short-circuit occurred, the heat source was diffused to the upper side and outside, causing a secondary accident.