• Title/Summary/Keyword: Wind-turbine

Search Result 2,096, Processing Time 0.034 seconds

An integrator based wind speed estimator for wind turbine control

  • Elmaati, Younes Ait;El Bahir, Lhoussain;Faitah, Khalid
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.443-460
    • /
    • 2015
  • In this paper, an integrator based method to estimate the effective wind speed in wind turbine systems is proposed. First, the aerodynamic torque was accurately estimated through a proportional gain based observer where the generator speed is the measured output of the system. The torque signal contains not only useful frequencies of the wind, but also high frequencies and the ones due to structural vibration. The useful information of the wind signal is low frequency. A spectral analysis permitted the determination of the useful frequencies. The high frequencies were then filtered before introducing the torque signal in the wind speed observer. The desired effective wind speed was extracted through an integrator based observer using the previously estimated aerodynamic torque. The strength of the method is to avoid numerical solutions used in literature of the wind speed estimation. The effectiveness of the proposed wind speed estimator and its use to control the generator speed has been tested under turbulent situations using the FAST software (Fatigue, Aerodynamics, Structures, and Turbulence), for large scale Megawatt turbine.

A Study on the Development of Wind Turbine using the lift and drag for the Offshore (양력 및 항력 조합형 해상용 풍력발전기 개발에 관한 연구)

  • Kim, Namhun;Lee, Byeongseong;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.3-183.3
    • /
    • 2010
  • This is the research of wind turbine that is designed to supply power to offshore buoy system. In order to reach maximum efficiency in limited space, vertical axis wind turbine was used. Vertical axis wind turbine system that was applied in this research has the form of lift and drag blade combined to achieve high efficiency at both high and low speed. In addition, support system was designed and developed to suit the offshore condition.

  • PDF

Analysis of economy and load effect of hybrid tower for wind turbine (풍력발전용 하이브리드 타워 경제성 및 하중영향 분석)

  • Lee, Seunugmin;Park, Hyunchul;Chung, Chinwha;Kwon, Daeyong;Kim, Yongchun;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.185.2-185.2
    • /
    • 2010
  • With the development of wind industry, the rated power of wind turbine also increase gradually. Accordingly, the size of wind turbine tower becomes larger and larger. The tower base diameter of 2MW wind turbine is about 4m. Larger tower is expected for 4MW or 5MW turbine. Due to limitation of transportation, new type of tower with smooth transportation and effective cost is needed. In this work, a hybrid tower consisting of steel and concrete is designed and analyzed. The optimum ratio of steel and concrete of hybrid tower are calculated as well as the thickness of the concrete part. Different FE analysis including modal analysis, buckling analysis and fatigue analysis are performed to check the design of hybrid tower comparing with the steel tower. Redesign is also expected after various analysis.

  • PDF

Examination on the Maximum-Cp Control of Wind Turbine by Sliding Mode Control (슬라이딩 모드제어 기법을 이용한 풍력 터빈의 최대 출력 제어 방법에 대한 검토)

  • Shin, Yun-Ho;Moon, Seok-Jun;Nam, Yong-Yun;Kim, Chang-Hyun;Ryu, Ji-June
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.74-82
    • /
    • 2011
  • Because concern on the problem of the limited energy is growing and the wind energy is considered as one of the biggest solutions, the researches on the wind energy and turbine are accomplished vigorously. The simulation tools on the non-linear characteristics of wind turbine system are various and it could describe the non-linear characteristics well but, the tool and methodology to apply non-linear control theory rarely exist. In this paper, the application procedure of sliding mode control theory to 2-DOF non-linear wind turbine system is suggested and the application results of it are also shown as compared with a torque loop control theory.

Development of a Wind Turbine Monitoring System using LabVIEW (LabVIEW를 이용한 풍력발전기 모니터링 시스템 개발)

  • 남윤수;김형기;유능수;이정완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.92-98
    • /
    • 2003
  • A wind turbine monitoring system is essential equipment fur the performance evaluation and mechanical load analysis of a wind turbine. A monitoring system using LabVIEW is developed in this study. This system monitors signals from a meteorological mast, wind turbine generator, and tower. The discrete signals which are sampled at t Hz are automatically saved on a data file in the unit of a day. Besides these basic functions, the developed monitoring system has the other several capabilities. One of them is the information access from a remote PC through the internet. A vision image of the test site area and data files that are produced by LabVIBW software can be uploaded to the main computer located in a remote site. An emergency backup system using UPS fur the power loss on the monitoring HW is also prepared, A detail explanation for the developed wind turbine monitoring system is presented in this study.

A Study on Vibration Isolation Technique of Building-augmented Wind Turbine (건물일체형 풍력발전기의 진동저감 기법 연구)

  • Lee, Jong Won;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.160-168
    • /
    • 2015
  • Vibration issue of a building structure due to a wind turbine should be resolved for the application of building-augmented wind turbine. In this study, a dynamic analysis for an horizontal-axis upwind wind turbine is carried out to calculate vibration excited to an example building structure. Characteristics of vertical vibration transfer of the building structure are analytically studied and compared with a criteria. Then, a method to isolate the vibration is presented by analyzing the vibration characteristics of the wind turbine, and verified by applying to the building structure.

A Study on Fine Element Modeling Method of Yaw Bearing for Wind Turbine (풍력터빈 요 베어링의 유한요소모델링 기법에 관한 연구)

  • Seok, Ho-Il;Ko, Woo-Shick;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.249-252
    • /
    • 2006
  • Recently, the interest for renewable energy producing system is increasing rapidly. Among these, the wind turbine is most highlighted. It is installed at severe environment and generate electricity for a long time to exceed in 20. Components of wind turbine are required high reliability. Therefore, structural strength analysis for wind turbine is needed an accurate FE model. This paper is to provide reliable fine element modeling method of yaw bearing for wind turbine.

  • PDF

Structural Design and Analysis of Connecting Part for Vertical Wind Turbine System Blade

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • This work is intended to develop a flapping-type vertical wind turbine system that will be applicable to diesel generators and wind turbine generator hybrid systems. In the aerodynamic design of the wind turbine blade, parametric studies were performed to determine an optimum aerodynamic configuration. After the aerodynamic design, the structural design of the blade was performed. The major structural components of the flapping-type wind turbine are the flapping blade, the connecting part, and the stopper. The primary focus of this work is the design and analysis of the connecting part. Structural tests were performed to evaluate the blade design, and the test results were compared with the results of the analysis.

Characteristics for Sound Power of Wind Turbine Gearbox by Load Variation (부하변동에 따른 풍력발전기용 증속기의 음향파워 특성)

  • Lee, Jae-Jeong;Lee, Seung-Yong;Seo, Young-Wook;Lee, Jin-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.311-315
    • /
    • 2012
  • In these days, promising renewable energy, wind turbine is clean energy but has an environmental pollutant which is noise. Noise assessment is one of the major performance evaluations for wind turbine and nowadays, developing and research for measurement and method of the assessment considering environmental pollutants is being important. Object in this study is that figuring out sound power characteristic of the gearbox for wind turbine through measuring sound intensity. In back-to-back test, we can figure out the noise characteristic of the gearbox for wind turbine through comparing and measuring sound pressure level, sound power level in operating at the each load condition respectively.

  • PDF

A Study on Finite Element Modeling Method of Yaw Bearing for Wind Turbine (풍력터빈 요 베어링의 유한요소모델링 기법에 관한 연구)

  • Lee, Dong-Hwan;Ko, Woo-Sick;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.918-923
    • /
    • 2007
  • Recently, the interest for renewable energy producing system is increasing rapidly. Among these, the wind turbine is most highlighted. It is installed at severe environment and generated electricity for a long time to exceed twenty years. Components of wind turbine are required high reliability. Therefore, structural strength analysis for wind turbine is needed for an accurate FE model. This paper is to provide reliable fine element modeling method of yaw bearing for wind turbine.