• Title/Summary/Keyword: Wind-pressure

Search Result 1,466, Processing Time 0.03 seconds

Time-series Change in Gyeongpo Beach Shoreline in 2009 and 2010 (2009-2010년 경포 해수욕장 해안선의 시계열 변화)

  • Lee, Chung-Il;Han, Moon-Hee;Jung, Hae-Kun;Kim, Sang-Woo;Kwon, Ki-Young;Jeong, Hee-Dong;Kim, Dong-Sun;Park, Sung-Eun
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1425-1435
    • /
    • 2011
  • Time-series change in Gyeongpo beach shoreline was illustrated using DGPS(Differential Global Positioning System, resolution < 0.6m) observation from April, 2009 to April, 2010. The shoreline was subdivided into 12 areas, and westward and eastward movement of shoreline position at each area was calculated. In general, the shoreline moved toward sea during summer, and it moved toward land during winter. The southern and northern part of the shoreline had different pattern in time-series. The shoreline in the southern part moved toward sea during summer and moved toward land during winter, but time-series pattern of the shoreline in the northern part was more complicated than that in the southern part. Pattern of time-series change in the northern part was made up of three different types; the first is that the shoreline moves continuously toward land, and the second thing is that the shoreline's movement is the opposite to the southern part, and the third thing is that the shoreline maintains a state of equilibrium without any great fluctuation. The total length of the shoreline was the largest during winter and the smallest during summer. In general, time-series change in the shoreline had positive(+) relationship with sea surface pressure and wind speed.

Investigation on the Penetration Resistance of Suction Bucket Foundation in Sand using Model Test (모형실험을 통한 모래지반에서 석션버켓기초의 관입저항력 평가)

  • Kim, Keunsoo;Kwon, Osoon;Oh, Myounghak;Jang, Insung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.75-83
    • /
    • 2014
  • Suction bucket foundation is installed with the differential pressure created by pumping water out of bucket. Bucket foundation has usually been utilized in mooring anchor for offshore platform or floating oil and gas production facilities in the open sea. After suction bucket foundation successfully was applied as the foundation for offshore wind turbines in Europe, it recently attracts much attention in Korea, too. To estimate the penetration resistance of the suction bucket foundation is one of the important matters that should be considered during its installation. This study carried out a series of model tests to investigate the penetration resistance of suction bucket foundation. And the mobilized soil strength factor was reviewed through comparing the experimental results by two installation ways (e.g., push-in-load and suction) and the results calculated by the conventional equation.

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

An experimental analysis of the sound reduction characteristics of air transparent noise barriers (통기형 방음벽의 음향감쇠 특성에 대한 실험적 분석)

  • Park, Chan-Jae;Ji, Yong-Soo;Lim, Jae-Hyun;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.491-500
    • /
    • 2016
  • The present study describes the acoustical characteristics of the new noise barriers which can control not only noise but also wind pressure by allowing air flow through barriers. In order to investigate the sound reduction index of the air transparent noise barrier, 17 models in total were examined with various size of openings and the volume of the resonators. As a result, it was found that the sound reduction index varies with the volume of the resonator and the area of the openings. Also, it was revealed that double layer of units has more sound reduction index than the single layer of unit at the frequency band from 400 Hz to 1250 Hz. This denoted that physical features of openings and resonators affect the sound reduction index of the air transparent noise barrier.

Evaluation of wireless communication devices for remote monitoring of protected crop production environment (시설재배지 환경 원격 모니터링을 위한 무선 통신 장비 평가)

  • Hur, Seung-Oh;Ryu, Myong-Jin;Ryu, Dong-Ki;Chung, Sun-Ok;Huh, Yun-Kun;Choi, Jin-Yong
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.747-752
    • /
    • 2011
  • Wireless technology has enabled farmers monitor and control protected production environment more efficiently. Utilization of USN (Ubiquitous Sensor Network) devices also brought benefits due to reduced wiring and central data handling requirements. However, wireless communication loses signal under unfavorable conditions (e.g., blocked signal path, low signal intensity). In this paper, performance of commercial wireless communication devices were evaluated for application to protected crop production. Two different models of wireless communication devices were tested. Sensors used in the study were weather units installed outside and top of a greenhouse (wind velocity and direction, precipitation, temperature and humidity), inside ambient condition units (temperature, humidity, $CO_2$, and light intensity), and irrigation status units (irrigation flow and pressure, and soil water content). Performance of wireless communication was evaluated with and without crop. For a 2.4 GHz device, communication distance was decreased by about 10% when crops were present between the transmitting and receiving antennas installed on the ground, and the best performance was obtained when the antennas were installed 2 m above the crop canopy. When tested in a greenhouse, center of a greenhouse was chosen as the location of receiving antenna. The results would provide information useful for implementation of wireless environment monitoring system for protected crop production using USN devices.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics (10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.

Statistical study on nightside geosynchronous magnetic field responses to interplanetary shocks

  • Park, Jong-Sun;Kim, Khan-Hyuk;Araki, Tohru;Lee, Dong-Hun;Lee, Ensang;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2012
  • When an interplanetary (IP) shock passes over the Earth's magnetosphere, the geosynchronous magnetic field strength near the noon is always enhanced, while the geosynchronous magnetic field near the midnight decreases or increases. In order to understand what determines the positive or negative magnetic field response at nightside geosynchronous orbit to sudden increases in the solar wind dynamic pressure, we have examined 120 IP shock-associated sudden commencements (SC) using magnetic field data from the GOES spacecraft near the midnight (MLT = 2200~0200) and found the following magnetic field perturbation characteristics. (1) There is a strong seasonal dependence of geosynchronous magnetic field perturbations during the passage of IP shocks. That is, the SC-associated geosynchronous magnetic field near the midnight increases (a positive response) in summer and decreases (a negative response) in winter. (2) These field perturbations are dominated by the radial magnetic field component rather than the north-south magnetic field component at nightside geosynchronous orbit. (3) The magnetic elevation angles corresponding to positive and negative responses decrease and increase, respectively. These field perturbation properties can be explained by the location of the cross-tail current enhancement during SC interval with respect to geosynchronous spacecraft position.

  • PDF

Development of Typhoon Damage Forecasting Function of Southern Inland Area By Multivariate Analysis Technique (다변량 통계분석을 이용한 남부 내륙지역 태풍피해예측모형 개발)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.281-289
    • /
    • 2019
  • In this study, the typhoon damage forecasting model was developed for southern inland district. The typhoon damage in the inland district is caused by heavy rain and strong winds, variables are many and varied, but the damage data of the inland district are not enough to develop the model. The hydrological data related to the typhoon damage were hour maximum rainfall amount which is accumulated 3 hour interval, the total rainfall amount, the 1-5 day anticipated rainfall amount, the maximum wind speed and the typhoon center pressure at latitude 33° near the Jeju island. The Multivariate Analysis such as cluster Analysis considering the lack of damage data and principal component analysis removing multi-collinearity of rainfall data are adopted for the damage forecasting model. As a result of applying the developed model, typhoon damage estimated and observed values were up to 2.2 times. this is caused it is difficult to estimate the damage caused by strong winds and it is assumed that the local rainfall characteristics are not considered properly measured by 69 ASOS.

R&D Trends and Unit Processes of Hydrogen Station (수소 스테이션의 연구개발 동향 및 단위공정 기술)

  • Moon, Dong Ju;Lee, Byoung Gwon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.331-343
    • /
    • 2005
  • Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.