• Title/Summary/Keyword: Wind-pressure

Search Result 1,466, Processing Time 0.03 seconds

Retrieval of Thermal Tropopause Height using Temperature Profile Derived from AMSU-A of Aqua Satellite and its Application (Aqua 위성 AMSU-A 고도별 온도자료를 이용한 열적 대류권계면 고도 산출 및 활용)

  • Cho, Young-Jun;Shin, Dong-Bin;Kwon, Tae-Yong;Ha, Jong-Chul;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.523-532
    • /
    • 2014
  • In this study, thermal tropopause height defined from WMO (World Meteorological Organization) using temperature profile derived from Advance Microwave Sounding Unit-A (AMSU-A; hereafter named AMSU) onboard EOS (Earth Observing System) Aqua satellite is retrieved. The temperature profile of AMSU was validated by comparison with the radiosonde data observed at Osan weather station. The validation in the upper atmosphere from 500 to 100 hPa pressure level showed that correlation coefficients were in the range of 0.85~0.97 and the bias was less than 1 K with Root Mean Square Error (RMSE) of ~3 K. Thermal tropopause height was retrieved by using AMSU temperature profile. The bias and RMSE were found to be -5~ -37 hPa and 45~67 hPa, respectively. Correlation coefficients were in the range of 0.5 to 0.7. We also analyzed the change of tropopause height and temperature in middle troposphere in the extreme heavy rain event (23 October, 2003) associated with tropopause folding. As a result, the distinct descent of tropopause height and temperature decrease of ~8 K at 500 hPa altitude were observed at the hour that maximum precipitation and maximum wind speed occurred. These results were consistent with ERA (ECMWF Reanalysis)-Interim data (potential vorticity, temperature) in time and space.

The Experimental Study of the Interaction Between the Flow rind Temperature Field and a Boundary Layer Due to a Variety of tole Height of a Vortex Generator (와동 발생기 높이 변화에 대한 경계층 내의 유동장과 온도장에 관한 실험적 연구)

  • Gwon, Su-In;Yang, Jang-Sik;Lee, Gi-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.82-93
    • /
    • 2002
  • The effects of the interaction between the flow and temperature field and a boundary layer due to a variety of the height of a vortex generator are experimentally investigated. The test facility consists of a boundary-layer wind tunnel with the vortex generator protruding from the bottom surface. In order to control the strength of the longitudinal vortices, the angle of attack and the spacing distance of the vortex generator are 20 degree and 40 mm, respectively. The height of the vortex generator (H) is 15 mm, 20 mm and 30 mm and the cord length of it is 50 mm. Three-component mean velocity measurements are made using a 5-hole probe system and the surface temperature distribution is measured by the hue capturing method using thermochromatic liquid crystals. By using the method mentioned above, the following conclusions are obtained from the present experiment. The boundary layer is thinned in the downwash region where the strong downflow and the lateral outflow of the boundary layer fluid occur and thickened in the upwash re,3ion where the longitudinal vortex sweeps low momentum fluid away from the bottom surface. In case that the height of the vortex generator increases, the averaged circulation and the maximum vorticity of the vortex pair decrease. The contours of the non-dimensional temperature show the similar trends fur all the cases (H=15 mm, 20 mm and 30 mm). The peak augmentation of the distribution of the local non-dimensional temperature occurs in the downwash region near the point of minimum boundary-layer thickness.

Distribution of Symptoms and Syndrome Differentiation Using Common Clinical Document Forms - Focused on Deficiency Syndrome Differentiation - (한의 공통 임상 기록 서식을 이용한 변증(辨證)과 증상(症狀)의 분포 조사 - 허증(虛證)을 중심으로 -)

  • Moon, Jin-Seok;Kim, Jeong-Cheol;Kang, Byoung-Gab;Kim, Bo-Young;Kang, Kyung-Won;Choi, Sun-Mi
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.2
    • /
    • pp.47-66
    • /
    • 2008
  • Background: It is insufficient information that are syndrome differentiations and detail symptoms in Korean. Methods: 19 traditional korean medical agencies collected 190 cases with vital sign, body measurement, patient own symptoms report and doctor diagnosis. And then we analyzed general distributions and comparisons of deficiency and non-deficiency. Results: The most past histories, in order, were the arthritis(20%), gastroenteropathy, hypertension, anemia, diabete mellitus. In chief complains, musculoskeletal occupies 60 percent of the total, and digestive system, head in order. In the syndrome differentiation, it appeared deficiency, spleen, Qi deficiency in order. Age(p=0.000), systolic blood pressure(p=0.044) and the waist-hip ratio(p=0.000) was significantly higher in the deficiency group compared with non-deficiency group. Patients with condition which dislikes the wind and with anxiety and with amazing and fear(驚恐) were significantly more in deficiency group(p=0.029, p=0.017, p=0.044). Conclusions: These statistics are continually revised report and it will be reported comparison of several syndrome differentiations and therapeutic effects by treatment methods.

  • PDF

Typhoon Wukong (200610) Prediction Based on The Ensemble Kalman Filter and Ensemble Sensitivity Analysis (앙상블 칼만 필터를 이용한 태풍 우쿵 (200610) 예측과 앙상블 민감도 분석)

  • Park, Jong Im;Kim, Hyun Mee
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.287-306
    • /
    • 2010
  • An ensemble Kalman filter (EnKF) with Weather Research and Forecasting (WRF) Model is applied for Typhoon Wukong (200610) to investigate the performance of ensemble forecasts depending on experimental configurations of the EnKF. In addition, the ensemble sensitivity analysis is applied to the forecast and analysis ensembles generated in EnKF, to investigate the possibility of using the ensemble sensitivity analysis as the adaptive observation guidance. Various experimental configurations are tested by changing model error, ensemble size, assimilation time window, covariance relaxation, and covariance localization in EnKF. First of all, experiments using different physical parameterization scheme for each ensemble member show less root mean square error compared to those using single physics for all the forecast ensemble members, which implies that considering the model error is beneficial to get better forecasts. A larger number of ensembles are also beneficial than a smaller number of ensembles. For the assimilation time window, the experiment using less frequent window shows better results than that using more frequent window, which is associated with the availability of observational data in this study. Therefore, incorporating model error, larger ensemble size, and less frequent assimilation window into the EnKF is beneficial to get better prediction of Typhoon Wukong (200610). The covariance relaxation and localization are relatively less beneficial to the forecasts compared to those factors mentioned above. The ensemble sensitivity analysis shows that the sensitive regions for adaptive observations can be determined by the sensitivity of the forecast measure of interest to the initial ensembles. In addition, the sensitivities calculated by the ensemble sensitivity analysis can be explained by dynamical relationships established among wind, temperature, and pressure.

Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018 (현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험)

  • Choi, Dayoung;Hwang, Yoonjeong;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

A Sunglasses Design to Prevent Snow Blindness at High Altitude (설맹 방지를 위한 고소등반용 선글라스 디자인)

  • Choi, Byung-Jin;Jang, Joon-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.19-22
    • /
    • 2007
  • Recently, the population of people exploring High Mountain trekking or expedition is increasing as an increase in the backpackers. Many accidents occurring at High Mountain above 6,000 m are the results of snow blindness. The damage of cornea and/or retina is direct cause of snow blindness. The UV intensity increases on the hand, along with the altitude caused by decrease in the atmospheric pressure, on the other hand the reflections by bright snow at high mountain area. And it increases approximately 3 times and 4 times higher than the ground level at altitude of 4,000 m and 8,000 m, respectively. The use of sunglasses is more favorable than goggles for the protection of snow blindness at High Mountains. The eye frames that have high mechanical strength and the plastic lenses which can protect UV 100% are recommended. The attachable shielding pads are needed to prevent the incident UV light reflected or scattered from the gap between glasses frame and face. The sunglasses must have flexible and long temples to wind the ears adequately for the prevention of detachment during climbing and it is recommended that the metal frame to be coated with plastics to prevent the eye surroundings from frostbite.

  • PDF

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

An Artificial Intelligence Method for the Prediction of Near- and Off-Shore Fish Catch Using Satellite and Numerical Model Data

  • Yoon, You-Jeong;Cho, Subin;Kim, Seoyeon;Kim, Nari;Lee, Soo-Jin;Ahn, Jihye;Lee, Eunjeong;Joh, Seongeok;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.41-53
    • /
    • 2020
  • The production of near- and off-shore fisheries in South Korea is decreasing due to rapid changes in the fishing environment, particularly including higher sea temperature in recent years. To improve the competitiveness of the fisheries, it is necessary to provide fish catch information that changes spatiotemporally according to the sea state. In this study, artificial intelligence models that predict the CPUE (catch per unit effort) of mackerel, anchovies, and squid (Todarodes pacificus), which are three major fish species in the near- and off-shore areas of South Korea, on a 15-km grid and daily basis were developed. The models were trained and validated using the sea surface temperature, rainfall, relative humidity, pressure,sea surface wind velocity, significant wave height, and salinity as input data, and the fish catch statistics of Suhyup (National Federation of Fisheries Cooperatives) as observed data. The 10-fold blind test results showed that the developed artificial intelligence models exhibited accuracy with a corresponding correlation coefficient of 0.86. It is expected that the fish catch models can be actually operated with high accuracy under various sea conditions if high-quality large-volume data are available.

Flow Structure of Conical Vortices Generated on the Roof of a Rectangular Prism (직사각형 프리즘 상면에서 발생되는 원추형 와의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • Characteristics of the conical vortices on the roof corner of a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and the height of the model was 5.3$\times$10$^3$. The mean, instantaneous velocity vector fields, vorticity fields, and turbulent kinetic energy distribution were measured for two different angles of attack, 30$^{\circ}$and 45$^{\circ}$. The PIV measurements clearly observed not only the conical main vortex and the secondary vortex but also the tertiary vortex which is firstly reported in this paper. Asymmetric formation of the corner vortex for the case of 30$^{\circ}$angle of attack produces relatively the high magnitude of vorticity and turbulent kinetic energy around the bigger vortex which generates the peak suction pressure on the roof. Fairly symmetric features of the roof vortex are observed in the case of 45$^{\circ}$angle of attack, however, the dynamic characteristics are proved to be asymmetric due to the rectangular shape of the roof.

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.