• 제목/요약/키워드: Wind turbine tower

검색결과 240건 처리시간 0.02초

풍력터빈의 구조특성 평가에 관한 연구-Part1 (A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part1)

  • 이경수;;;한상을
    • 한국공간구조학회논문집
    • /
    • 제14권4호
    • /
    • pp.47-54
    • /
    • 2014
  • This paper presents the structural model development and verification processes of wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. The wind turbine assembled by blades, rotor, nacelle and tower. The wind blade connected to rotor. To make the whole turbine structural model, the mass and stiffness properties of all parts should be clear and given. However the wind blade, hub, nacelle, rotor and power generating machinery parts have difficulties to define the material properties because of the composite and assembling nature of that. Nowadays to increase the power generating coefficient and cost efficiency, the highly accurate aerodynamic loading evaluating technique should be developed. The Fluid-Structure Interaction (FSI) is the emerging new way to evaluate the aerodynamic force on the rotating wind blade. To perform the FSI analysis, the fluid and structural model which are sharing the associated interface topology have to be provided. In this paper, the structural model of blade development and verifying processes have been explained for Part1. In following Part2 paper, the processes of whole turbine system will be discussing.

풍력발전기 축소 구조 모델의 진동특성 연구 (A Study on the Vibration Characteristics of the Reduced Structure Model of Wind Turbine Generator)

  • 박무열;은성용;김석현
    • 산업기술연구
    • /
    • 제24권B호
    • /
    • pp.83-87
    • /
    • 2004
  • A reduced structure model of a wind turbine generator is designed and manufactured. Mode data are obtained by modal testing and analytical method. Vibration response is measured and investigated under various speed condition by using a waterfall plot. Possibility of severe resonance is observed and the mechanism is explained by using the mode data. Simplified theoretical model gives the 1st resonance frequency of wind turbine structure model. The theoretical model can be applied in the design stage of the wind turbine structure to avoid the severe resonance problem.

  • PDF

수직축 소형 풍력터빈 성능 향상을 위한 로터 형상 개선에 대한 연구 (A Study on the Improvement of the Rotor Shape for Improving Performance of Small Wind Turbine with Vertical Axis)

  • 김찬종;김재운;백인수;김철진
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.37-40
    • /
    • 2017
  • This study was carried out to improve the performance of a vertical-axis micro wind turbine. It is unique in that it has two identical generators on both sides of the main shaft. Also it has a C shape frame to fix the generators and the main shaft firmly and to provide a connection to a tower. Performance analysis of the wind turbine rotor was performed using Qblade, which is an analysis program for vertical axis wind turbines and freeware. Based on the analysis results, the blade airfoil, the chord length, and the rotor size were modified to improve the performance of the rotor. The modification was found to increase the performance of the wind turbine and to reach the targeted rated power.

Aero-elastic coupled numerical analysis of small wind turbine-generator modelling

  • Bukala, Jakub;Damaziak, Krzysztof;Karimi, Hamid Reza;Malachowski, Jerzy
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.577-594
    • /
    • 2016
  • In this paper a practical modelling methodology is presented for a series of aero- servo- elastic- coupled numerical analyses of small wind turbine operation, with particular emphasis on variable speed generator modelling in various wind speed conditions. The following characteristics are determined using the available computer tools: the tip speed ratio as a function of the generator constant (under the assumption of constant wind speed), the turbine coefficient of power as a function of the tip speed ratio (the torque curve is modified accordingly and generator speed and power curves are plotted), turbine power curves and coefficient of power curve as functions of the incoming wind speed. The last stage is to determine forces and torques acting on rotor blades and turbine tower for specific incoming wind speeds in order to examine the impact of the stall phenomena on these values (beyond the rated power of the turbine). It is shown that the obtained results demonstrate a valuable guideline for small wind turbines design process.

균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교 (Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow)

  • 김진;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

Comparative study on the structural behavior of a transition piece for offshore wind turbine with jacket support

  • Ma, Chuan;Zi, Goangseup
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.363-373
    • /
    • 2022
  • As a key reinforcement connection between a tower and a substructure in offshore wind turbine system, the transition piece is inevitably subjected to cyclic dynamic environmental loads such as wind, current and wave. Therefore, well designed transition piece with high strength and good fatigue resistance is of great significance to the structural safety and reliability of offshore wind power systems. In this study, the structural behavior of the transition piece was studied by an extensive sets of finite element analyses. Three widely used types of transition piece were considered. The characteristics of stress development, fatigue life and weight depending on the type of the transition piece were investigated in the ultimate limit state (ULS) and the fatigue limit state (FLS) of a 5-MW offshore wind turbine to be placed in Korea. An optimal form of the transition piece was proposed based on this parametric study.

6kW 독립형 풍력발전기의 진동 모니터링 및 분석 (Vibration Monitoring and Analysis of a 6kW Wind Stand Alone Turbine Generator)

  • 김석현;남윤수;유능수;이정완;박무열;박해균;김태형
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.81-86
    • /
    • 2005
  • A vibration monitoring system for a small class of wind turbine (W/T) is established and operated. The monitoring system consists of monolithic integrated chip accelerometer for vibration monitoring, anemometers for wind data acquisition and auxiliary sensors for atmospheric data. Using the monitoring system, vibration response of a 6kW W/T generator is investigated. Acceleration data of the W/T tower under various operation condition is acquired in real time using LabVIEW and is remotely transferred from the test site to the laboratory in school by internet. Vibration state of the tower structure is diagnosed within the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site.

  • PDF

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas;Ayse T. Daloglua
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.273-285
    • /
    • 2023
  • This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.

윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인 (An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.

풍력발전기 초기단계 모사실험을 위한 4자유도 수학적 모형에 대한 연구 (Study on 4-degree-of-freedom Mathematical Model for Simulation of Wind Turbine System at Initial Design Stage)

  • 신윤호;문석준;정태영
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.681-689
    • /
    • 2013
  • The commercial tools to simulate the non-linear dynamic characteristics of wind turbine system are various but, the tool take much time to simulate the control algorithm and require many input variables. In this paper, the procedures to derive the simplified 4-degree-of-freedom mathematical model of a 2-MW wind turbine which could be used at the initial design stage of the controller are proposed based on RISO's suggested method. In this model, the 1st tower fore-after bending motion and 1st blade flapping motion are also considered in addition to the rotor-generator rotation motion in the 2-DOF model. The effectiveness of the 4-DOF model is examined comparing with the 2-DOF model and verification of the simplified model is accomplished through modal analysis for whole wind turbine system.