• 제목/요약/키워드: Wind turbine system

검색결과 1,005건 처리시간 0.032초

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

타입별 풍력 발전기 설치에 따른 민감 부하의 순간전압강하 저감 효과 비교 분석 연구 (A Study of the Mitigating Effect Comparison of Voltage Sags by WTG Types Based on the Concept of Area of Vulnerability)

  • 박세준;윤민한
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1682-1688
    • /
    • 2017
  • In modern society, the number of industrial customers using equipment sensitive particularly to voltage sags is rapidly increasing. As voltage sags can cause loss of information as well as false operation of the control device, it results in the vast economic damage in industrial processes. One way to mitigate voltage sags in the sensitive loads is the installation of distributed generation (DGs) on the periphery of these loads. In addition, renewable energy sources are currently in the spot light as the potential solution for the energy crisis and environmental issues. In particular, wind power generation which is connected to a grid is rising rapidly because it is energy efficient and also economically feasible compared to other renewable energy sources. On the basis of the above information, in this paper, with Wind Turbine Generators (WTGs) installed nearby the sensitive load, the analysis of the mitigating effect comparison by types of WTGs is performed using voltage sag assessment on the IEEE-30 bus test system. That is, the areas of vulnerability according to types of WTGs are expected to be different by how much reactive power is produced or consumed as WTG reactive power capability is related to the types of WTGs. Using the concept of 'Vulnerable area' with the failure rate for buses and lines, the annual number of voltage sags at the sensitive load with the installation of WTGs per type is studied. This research will be anticipated to be useful data when determining the interconnection of wind power generation in the power system with the consideration of voltage sags.

30kW급 발전시스템의 계통 연계형 인버터 개발 (Development of Grid Connection Type Inverter for 30kW Wind Power Generation System)

  • 함년근;강승욱;김용주;한경희;안규복;송승호;김동용;노도환;오영진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.990-992
    • /
    • 2002
  • 30kW electrical power conversion system is delveloped for the variable speed wind turbine system. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and frequency of generator output vary according to the wind speed, a dc/dc boosting chopper is utilized to maintain constant dc link voltage. Grid connection type PWM inverter supply currents into the utility line by regulating the dc link voltage. The active power is controlled by q-axis current which the reactive power can be controlled by d-axis current reference change. The phase angle of utility voltage is detected using s/w PLL(Phased Locked Loop) in d-q synchronous reference frame. This scheme gives a low cost power solution for variable speed WECS.

  • PDF

계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략 (Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance)

  • 한대수;서용석
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터 (3-Phase Single Stage AC-DC Converter for Small Wind Turbine System)

  • 문유진;박범수;김상규;김은수;임덕진
    • 전력전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

간략화된 배터리 모델이 적용된 IUIa 충전 방식의 에너지 저장장치의 PSCAD/EMTDC 시뮬레이션 모델에 관한 연구 (A Study on the PSCAD/EMTDC Simulation Model of Battery Energy Storage with Simplified Battery Model and IUIa Charging Method)

  • 김성현;이계병;홍준희;손광명
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.84-90
    • /
    • 2010
  • In order to level electric power of the photovoltaic and wind-turbine system and ensure fast response of the fuel-cell and micro-turbine, the energy storage is required in the microgrid system. In this paper, a simplified simulation model of the battery energy storage for charging method with IUIa is developed using PSCAD/EMTDC. The model consists of e.m.f.(electromotive force), internal resistor and overvoltage capacitor. A method for deciding parameters of the model on a case-by-case basis is proposed. The developed model can be used in the simulation of a complicated system such as a microgrid system.

유체마찰에너지를 이용한 풍력열발생조의 성능 분석 (Performance Analysis of the Wind Power Heat Generation Drum Using Fluid Frictional Energy)

  • Kim, Yeong-Jung;Yu, Yeong-Seon;Gang, Geum-Chun;Baek, Lee;Yun, Jin-Ha;Lee, Geon-Jung
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.263-270
    • /
    • 2001
  • This study was conducted in order to develop wind-water heating system where frictional heat is creased between the rotor and working fluid when they are rotating in the cylindrical heat generator. The wind-water heating system is composed of rotor, stator, working fluid, motor, inverter and heat generation tank. Instead of wind turbine, we have used an electrical motor of 30㎾ to rotate the rotor in this system. Two working fluids and six levels of rotor rpm were tested to quantify heat amounts generated by the system. Generally, as motor rpm goes up heat amount increases that we have expected. At the same rpm, viscous fluid showed up better performance than the water, generating more heat by 10$\^{C}$ difference. The greatest heat amount of 31,500kJ/h was obtained when the system constantly drained out the hot water of at the flow rate of 500ℓ/h. Power consumption rate of the motor was measured by thee phase electric power meter where the largest power consumption rate was 14㎾ when motor rpm was 600 and gained heat was 31,500kJ/h, that indicated total thermal efficiency of the wind power water heating system was 62%.

  • PDF

The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1658-1663
    • /
    • 2021
  • Research on climate change and global warming on the power generation systems are rapidly increasing because of the Importance of the sustainable energy supply, thus the electricity supply since its growing share, in the end, uses energy supply. However, some researchers conducted this field, but many research gaps are not mentioned and filled in this field's literature since the lack of general statements and the quantitative models and formulation of the issue. In this research, an exergy-based model is implemented to model a set of six power generation technologies (combined cycle, gas turbine, nuclear plant, solar PV, and wind turbine) and use this model to simulate each technology's responses to climate change impacts. Finally, using these responses to define and calculate a formulation for the relationship between the system's energy performance in different environmental situations and a dimensionless index to quantize each power technology's reliability against the climate change impacts called the Pahlev reliability index (P-index) of the power technology. The results have shown that solar and nuclear technologies are the most, and wind turbines are the least reliable power generation technologies.

풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 - (A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case -)

  • 김진영;김현구;강용혁;윤창열;김지영;이준신
    • 한국태양에너지학회 논문집
    • /
    • 제36권1호
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

도심형 풍력 발전기용 방사 자속형 영구자석 동기 발전기의 출력특성에 관한 연구 (A Study on Output Characteristic Design of Radial Field Permanent Magnet Synchronous Generator for Urban Wind Turbine)

  • 배병덕;윤승주;정태욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1001-1002
    • /
    • 2011
  • Recently, issues regarding environment and the diversification of dependence in oil are watched with keen interest. Wind power attracts most interest because of its high-energy efficiency with eco friendly functions. In this paper, deal with design of radial field permanent magnet synchronous generator for a urban wind power system. Analyzed the RFPM generator by electromagnetic, and designed wind power generator with this. The output characteristic of machine and all of process is analyzed by 2D FEA due to geometrical structures of RFPM machine.

  • PDF