• 제목/요약/키워드: Wind turbine gearbox

검색결과 64건 처리시간 0.033초

풍력발전기 증속기 상태를 감시하기 위한 SaaS 클라우드 인프라 개발 (Development of SaaS cloud infrastructure to monitor conditions of wind turbine gearbox)

  • 이광세;최정철;강승진;박사일;이진재
    • 한국산학기술학회논문지
    • /
    • 제19권9호
    • /
    • pp.316-325
    • /
    • 2018
  • 본 논문에서, 풍력발전기 운영관리 및 유지보수 비용을 저감하기 위해, 분산되는 전산자원을 통합하고 인적 자원을 효율적으로 운영 할 목적으로 SaaS 클라우드 방식의 상태 감시 인프라를 설계 및 개발하였다. 개발한 인프라에서 관련 업무 및 서비스에 따라 각 데이터들을 계층화 하였다. 인프라 상에서 상태 감시를 수행 할 경우에 필요한 기본적인 SW를 개발하였다. 측정 시스템에 대응하는 데이터베이스 설계 SW, 현장 측정 SW, 데이터 전송 SW, 모니터링 SW로 구성되어 있다. 기존의 SCADA 데이터 뿐 아니라 추가적인 센서를 설치하여 풍력발전기의 상태 관측이 가능하다. 상태감시 알고리즘 내 단계 별 지연 시간을 모델링하여, 현장 측정에서 최종 모니터링 단계 까지 소요되는 총 지연 시간을 정의 하였다. 진동 데이터는 고해상도 측정에 의해 취득되기 때문에, 지연 시간은 불가피하고 유지보수에 관한 프로그램 운영 시 지연시간 분석은 필수적이다. 모니터링 대상은 MW 용량의 풍력발전기의 증속기이며, 해당 풍력발전기는 운전 한 지 10년이 넘는 모델로서, 이는 앞으로 해당 풍력발전기의 효율적인 유지보수를 위해 정확한 상태 감시가 필수적임을 뜻한다. 본 인프라는 연간 50TB 용량의 고해상도 풍력발전기 증속기 상태를 처리 할 수 있도록 운영 중이다.

저속 기어형 2MW급 풍력발전기 개념설계 (Conceptual Design of 2MW Wind Turbine Generator with Low-speed Gearbox)

  • 손영욱;김영찬;김용환;이응채;박인수;정진화;한경섭;전중환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.319-322
    • /
    • 2006
  • Under the national project for the development of 2MW wind energy convert system, we are under development of the prototype of 2MW wind turbine with low speed gearbox. This system adopts low speed gear box with planetary and spur gear and is pitch regulated variable speed type with the synchronous permanent magnet generator. The compromised size of generator in diameter and width are adopted to meet the structural design requirements. In this paper, the concept study for the type, the aerodynamic design for the blade and the details of load calculation will be presented. The detailed characteristics of the system will also be introduced.

  • PDF

3MW급 풍력터빈을 모사한 풍력터빈 시뮬레이터 제어로직 설계에 관한 연구 (A Study on the Design of Control Logic for Wind Turbine Simulator having Similarity with 3MW Class Wind Turbine)

  • 오기용;이재경;박준영;이준신
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.810-816
    • /
    • 2012
  • As wind power has increased steadily, the importance of a condition monitoring system is being emphasized to maximize the availability and reliability of a wind turbine. To develop the advanced algorithms for fault detection and lifespan estimation, a wind turbine simulator is essential for verification of the proposed algorithms before applying them to a condition diagnosis & integrity prognosis system. The developed new-type simulator in this paper includes blades and various sensors as well as a motor, a gearbox and a generator of which the existing simulators generally consist. It also has similarity with a 3MW class wind turbine and can be used to acquire operational data from various operation conditions. This paper presents a design method of control logic for the wind turbine simulator, which gives a wind generation method and similar dynamic characteristics with the 3MW wind turbine. Finally, the proposed control logic is verified through experiments.

2.5MW 풍력발전기 기어박스 동특성 연구 (Study of Dynamic Characteristics of 2.5-MW Wind Turbine Gearbox)

  • 김정수;박노길;한기봉;이형우
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.314-323
    • /
    • 2014
  • In this study, a gearbox and blade were modeled in the MASTA program, and the housing and carrier components were modeled using a finite element method. Using substructure synthesis, all the components were combined and used to establish a vibration model of a 2.5-MW wind turbine gearbox. In addition, the safety displacement factor was evaluated using an AGMA data sheet about bearing's outer race for the input shaft and output shaft. As a result, the bearing's outer race for the input shaft, and the radial and axial responses were satisfied by the $1^{st}$ and $2^{nd}$ planetary gears and the $3^{nd}$ helical gear transmission error(TE), respectively. However, the output shaft support bearing's outer race responses were not satisfied with the radial response by the $2^{nd}$ TE and axial response by the $3^{rd}$ TE. To reduce the vibration, tooth modification was needed. After profile tooth modification, at the outer race of the output shaft support bearing, the radial response was reduced by approximately $20{\mu}m$, and the axial response was reduced by approximately $6{\mu}m$.

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

풍력발전기의 풍하중특성에 관한 연구 (A study on wind load characteristics of wind turbines)

  • 김정수;박노길;김영덕;김수엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.124-129
    • /
    • 2010
  • Wind load characteristics is investigated for vibration analysis of wind turbine gearbox. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. A blast wind model is assumed, of which the maximum velocity is located at the center and the velocity profile is normally distributed. The periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train.

  • PDF

5MW 풍력용 Pitch Drive 구성품의 부하에 관한 연구 (A Study on Components Load of 5MW Wind Turbine Pitch Drive)

  • 김동영;이인범;양용군;류성기
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.115-120
    • /
    • 2014
  • Wind power is a type of clean energy source which does not produce carbon dioxide. The wind turbine industry is considered as a major growth industry in many countries. The main cause of wind turbine failure arises in the wind turbine gearbox, and the main type of damage occurs in the bearings and gears. Therefore, predictions of gear and bearing damage are very important to ensure the reliability of the wind turbine reducers used in these systems. In this research, in order to optimize the wind turbine reducer, a series of simulations and redesigns was done using the tool RomaxDesigner. The RomaxDesigner model was used to analyze the bearing life of the duty cycle for a 5 MW wind-turbine pitch drive and to calculate the load in operating states. The reducer was designed to satisfy the life requirement by analyzing bearing damage and calculating the stress values of the main parts of the reducer.

3MW급 해상 풍력발전시스템 개발현황 (Development Status of 3MW Class Offshore Wind Turbine)

  • 주완돈;박정훈;최준혁;임채욱;박종포
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.366-369
    • /
    • 2007
  • This paper presents the general results of the conceptual design of a 3MW class offshore wind turbine named WinDS 3000 under development. In WinDS 3000, an integrated drive train design, three stage gearbox and permanent magnet generator (PMG) with fully rated converters have been introduced. A pitch regulated variable speed power control with individual pitch control has been adopted to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. Through the introduction of WinDS 3000, it is expected that helpful to understanding of the development status of 3MW offshore wind turbine.

  • PDF

3MW급 IEC Wind Class IIa 풍력발전시스템 개발 (Development of 3MW Wind Turbine for IEC Wind Class IIa)

  • 이기학;이상일;우상우;오인규;박종포
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.236-239
    • /
    • 2011
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$(TC IIa) which is a trade name of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$(TC IIa) has been designed in consideration of high Reliability, Availability, Maintainability and Serviceability (RAMS) and low cost of electricity (CDE) for the TC IIa condition based on GL guideline. An integrated drive-train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in partial load operation and grid-friendly system for both 50 Hz and 60 Hz. A pitch-regulated variable speed control system has been introduced to control wind turbine power while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements.

  • PDF

GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법 (Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010)

  • 정대하;김동현;김명환
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.