• Title/Summary/Keyword: Wind stress

Search Result 518, Processing Time 0.027 seconds

Dynamic crosswind fatigue of slender vertical structures

  • Repetto, Maria Pia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.527-542
    • /
    • 2002
  • Wind-excited vibrations of slender structures can induce fatigue damage and cause structural failure without exceeding ultimate limit state. Unfortunately, the growing importance of this problem is coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical method for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formulation of a parallel method that the authors recently developed with regard to alongwind vibrations. It takes into account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind actions on the stationary structure are caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models. The structural response in the small displacement regime is expressed in closed form by considering only the contribution of the first vibration mode. The stress cycle counting is based on a probabilistic method for narrow-band processes and leads to analytical formulae of the stress cycles histogram, of the accumulated damage and of the fatigue life. The extension of this procedure to take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method. The examples point out the great importance of vortex shedding and especially of lock-in concerning fatigue.

Use of Piezoelectric Effect in Portable Loadless Wind-Power Source for Ubiquitous Sensor Networks (유비쿼터스 센서네트워크를 위한 압전효과 기반의 무구속 휴대용 풍력 전원 장치)

  • Chang, Hyung-Kwan;Kim, Dae-Joong;Park, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.623-628
    • /
    • 2010
  • This paper presents a wind-power-driven portable power source based on piezoelectric effect. Positive piezoelectric effect is one of efficient and widely used mechanisms for converting mechanical energy to electrical energy. However, for this mechanism, a periodic mechanical stress with a high frequency, as in the case of AC, has to be exerted; such stress cannot be exerted by the natural wind in the environment. The natural wind has a constant velocity with slow and irregular variations, as in the case of DC. In this paper, we propose a novel and simple mechanism to convert mechanical energy into electrical energy. The DC-like wind flow is passed through a propeller to convert it to an AC-like wind flow; the resultant AC-like periodic flow induces vibrations in a piezoelectric cantilever, thereby, generating electrical power. This system is expected to be one of practical solutions for wireless energy supply to ubiquitous sensor networks (USNs).

Proposal of Return Period and Basic Wind Speed Map to Estimate Wind Loads for Strength Design in Korea (강도설계용 풍하중 평가를 위한 재현기간과 기본풍속지도의 제안)

  • Ha, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Strength design wind loads for the wind resistance design of structures shall be evaluated by the product of wind loads calculated based on the basic wind speed with 100 years return period and the wind load factor 1.3 specified in the provisions of load combinations in Korean Building Code (KBC) 2016. It may be sure that the wind load factor 1.3 in KBC(2016) had not been determined by probabilistic method or empirical method using meteorological wind speed data in Korea. In this paper, wind load factors were evaluated by probabilistic method and empirical method. The annual maximum 10 minutes mean wind speed data at 69 meteorological stations during past 40 years from 1973 to 2012 were selected for this evaluation. From the comparison of the results of those two method, it can be found that the mean values of wind load factors calculated both probability based method and empirical based method were similar at all meteorological stations. When target level of reliability index is set up 2.5, the mean value of wind load factors for all regions should be presented about 1.35. When target level of reliability index is set up 3.0, wind load factor should be presented about 1.46. By using the relationship between importance factor(conversion factor for return period) and wind load factor, the return periods for strength design were estimated and expected wind speeds of all regions accounting for strength design were proposed. It can be found that return period to estimate wind loads for strength design should be 500 years and 800 years in according to target level of reliability index 2.5 and 3.0, respectively. The 500 years basic wind speed map for strength design was suggested and it can be used with a wind load factor 1.0.

Design for Yaw Brake System in Wind Turbine (풍력발전기 요 브레이크 시스템의 설계)

  • Park, Jin-Hwan;Park, Sang-Shin;Yoon, Yong-Ik;Yoo, Chang-Hee;Hwang, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.204-208
    • /
    • 2011
  • Yaw brakes are used in wind turbines to control the orientation of blades to be perpendicular to the wind. These devices are very important machine elements because they are closely related to the overall efficiency of wind turbines. One unit of yaw brakes is composed of a friction pad and a caliper. In this study, a tangential force between the friction pad and the disk is calculated when the brake is acting in 750 kW wind turbine. Then, stress distribution and the deformation of the caliper are calculated using a finite element analysis. An experimental equipment is also developed to verify the exactness of calculated results. The analytical and experimental results are presented and discussed.

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

Effect of corner modifications on 'Y' plan shaped tall building under wind load

  • Sanyal, Prasenjit;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.245-260
    • /
    • 2020
  • Wind load and responses are the major factors which govern the design norms of tall buildings. Corner modification is one of the most commonly used minor shape modification measure which significantly reduces the wind load and responses. This study presents a comparison of wind load and pressure distribution on different corner modified (chamfered and rounded) Y plan shaped buildings. The numerical study is done by ANSYS CFX. Two turbulence models, k-epsilon and Shear Stress Transport (SST), are used in the simulation of the building and the data are compared with the previous experimental results in a similar flow condition. The variation of the flow patterns, distribution of pressure over the surfaces, force and moment coefficients are evaluated and the results are represented graphically to understand the extent of nonconformities due to corner modifications. Rounded corner shape is proving out to be more efficient in comparing to chamfered corner for wind load reduction. The maximum reduction in the maximum force and moment coefficient is about 21.1% and 19.2% for 50% rounded corner cut.

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

Aeroelastic investigation of a composite wind turbine blade

  • Rafiee, Roham;Fakoor, Mahdi
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.671-680
    • /
    • 2013
  • Static aeroelastic is investigated in a wind turbine blade. Imposed to different loadings, the very long and flexible structures of blades experience some changes in its preliminary geometry. This results in variations of aerodynamic loadings. An iterative approach is developed to study the interactions between structure and aerodynamics evaluating variations in induced stresses in presence of aeroelasticity phenomenon for a specific wind turbine blade. A 3D finite element model of the blade is constructed. Aerodynamic loading is applied to the model and deflected shape is extracted. Then, aerodynamic loadings are updated in accordance with the new geometry of the deflected blade. This process is repeated till the convergence is met. Different operational conditions consisting of stand-by, start-up, power production and normal shut-down events are investigated. It is revealed that stress components vary significantly in the event of power production at the rated wind speed; while it is less pronounced for the events of normal shut-down and stand-by.

Evaluation for Fatigue Resistance of Small Wind Turbine Composite Blade according to GL Guideline (GL Guideline에 의거한 소형 풍력발전용 복합재 블레이드의 피로 저항성 평가)

  • Jang, Yun Jung;Kang, Ki Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study aims to estimate the fatigue resistance of small wind composite blade using the fatigue life estimation formula in the GL guideline. For this, firstly, we estimated a turbine blade's bending moment spectrum by using wind profile wind profile and BEMT. And fatigue tests were performed to obtain the S-N curve of composite materials used in blade. In addition, a finite element analysis was used to identify fatigue critical locations and fatigue stress spectrum. And the fatigue resistance of composite blade were evaluated using the rainflow cycle counting, and Goodman diagram and the fatigue life estimation formula in the GL guideline.

Comparative study on the structural behavior of a transition piece for offshore wind turbine with jacket support

  • Ma, Chuan;Zi, Goangseup
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2022
  • As a key reinforcement connection between a tower and a substructure in offshore wind turbine system, the transition piece is inevitably subjected to cyclic dynamic environmental loads such as wind, current and wave. Therefore, well designed transition piece with high strength and good fatigue resistance is of great significance to the structural safety and reliability of offshore wind power systems. In this study, the structural behavior of the transition piece was studied by an extensive sets of finite element analyses. Three widely used types of transition piece were considered. The characteristics of stress development, fatigue life and weight depending on the type of the transition piece were investigated in the ultimate limit state (ULS) and the fatigue limit state (FLS) of a 5-MW offshore wind turbine to be placed in Korea. An optimal form of the transition piece was proposed based on this parametric study.