DOI QR코드

DOI QR Code

유비쿼터스 센서네트워크를 위한 압전효과 기반의 무구속 휴대용 풍력 전원 장치

Use of Piezoelectric Effect in Portable Loadless Wind-Power Source for Ubiquitous Sensor Networks

  • 투고 : 2009.12.30
  • 심사 : 2010.04.26
  • 발행 : 2010.06.01

초록

본 논문은 풍력에 의해 구동되는 압전효과 기반의 무구속 휴대용 전원 장치를 제안한다. 기계적 에너지를 효율적으로 변환하는 메커니즘의 한가지로 기계적 에너지를 전기적 에너지로 변환하는 압전효과를 이용하는 방법이 있다. 압전효과는 주기적으로 변하는 응력을 필요로 하지만, 자연 바람은 거의 일정한 속도를 보이거나, 변화하더라도 매우 느리고 불규칙적인 주파수를 갖기 때문에, 효과적으로 전기적 에너지를 얻어내기 힘들다. 본 연구에서는 바람을 프로펠러에 통과시켜, 손쉽게 주기적으로 변하는 응력을 만들어내고, 이를 압전외팔보에 전달하여 효율적으로 에너지를 변환하였다. 본 연구결과는 유비쿼터스 센서네트워크 시스템에 대한 에너지 공급의 실질적인 해결책이 되리라고 기대된다.

This paper presents a wind-power-driven portable power source based on piezoelectric effect. Positive piezoelectric effect is one of efficient and widely used mechanisms for converting mechanical energy to electrical energy. However, for this mechanism, a periodic mechanical stress with a high frequency, as in the case of AC, has to be exerted; such stress cannot be exerted by the natural wind in the environment. The natural wind has a constant velocity with slow and irregular variations, as in the case of DC. In this paper, we propose a novel and simple mechanism to convert mechanical energy into electrical energy. The DC-like wind flow is passed through a propeller to convert it to an AC-like wind flow; the resultant AC-like periodic flow induces vibrations in a piezoelectric cantilever, thereby, generating electrical power. This system is expected to be one of practical solutions for wireless energy supply to ubiquitous sensor networks (USNs).

키워드

참고문헌

  1. Hill, J. L. and Culler, D. E., 2002, "MICA: A Wireless Platform for Deeply Embedded Networks," IEEE Micro. Vol. 22, No. 6, pp. 12-24. https://doi.org/10.1109/MM.2002.1134340
  2. Roundy, S., Steingart, D., Frechette, L., Wright, P. and Rabaey, J., 2004, "Power Sources for Wireless Sensor Networks," Wireless Sensor Networks, Proceedings. 2920, pp. 1-17.
  3. Anton, S. R. and Sodano, H. A., 2007, "A Review of Power Harvesting Using Piezoelectric Materials (2003-2006)," Smart Materials & Structures. Vol. 16, No. 3, pp. 1-21. https://doi.org/10.1088/0964-1726/16/1/001
  4. Sodano, H. A., Park, G. and Inman, D. J., 2004, "Estimation of Electric Charge Output for Piezoelectric Energy Harvesting," Strain. Vol. 40, No. 2, pp. 49-58. https://doi.org/10.1111/j.1475-1305.2004.00120.x
  5. Priya, S., Chen, C. T., Fye, D. and Zahnd, J., 2005, "Piezoelectric Windmill: A Novel Solution to Remote Sensing," Japanese Journal of Applied Physics Part 2- Letters & Express Letters. Vol. 44, No. 1-7, pp. 104-107. https://doi.org/10.1143/JJAP.44.L104
  6. Myers, R., Vickers, M., Kim, H. and Priya, S., 2007, "Small Scale Windmill," Applied Physics Letters. Vol. 90, No. 5,
  7. Yu, K. H., Kwon, T. G., Yun, M. J. and Lee, S. C., 2002, "Development of a Tactile Sensor Array with Flexible Structure Using Piezoelectric Film," Ksme International Journal. 16, 10, 1222-1228.
  8. Wang, S. H. and Chen, S. H., 2008, "Blade Number Effect for a Ducted Wind Turbine," Journal of Mechanical Science and Technology. 22, 10, 1984-1992. https://doi.org/10.1007/s12206-008-0743-8

피인용 문헌

  1. Wireless Power Generation Strategy Using EAP Actuated Energy Harvester for Marine Information Acquisition vol.03, pp.09, 2011, https://doi.org/10.4236/wsn.2011.39033