• Title/Summary/Keyword: Wind speed prediction

Search Result 324, Processing Time 0.021 seconds

Prediction of Wildfire Spread and Propagation Algorithm for Disaster Area (재난 재해 지역의 산불 확산경로와 이동속도 예측 알고리즘)

  • Koo, Nam-kyoung;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1581-1586
    • /
    • 2016
  • In this paper, we propose a central disaster monitoring system of the forest fire. This system provides the safe-zone and detection to reduce the suppression efforts. In existing system, it has a few providing the predicting of wildfire spread model and speed through topography, weather, fuel factor. This paper focus on the forest fire diffusion model and predictions of the path identified to ensure the safe zone. Also we have considering the forest fire of moving direction and speed for fire suppression and monitering. The proposed algorithm could provide the technique to analyze the attribute information that temperature, wind, smoke measured over time. This proposed central observing monitoring system could provide the moving direction of spred out forecast wildfire. This observing and monitering system analyze and simulation for the moving speed and direction forest fire, it could be able to predict and training the forest fire fighters in a given environment.

Estimation of leeway of jigging fishing vessels by external factors (외력에 의한 채낚기 어선의 표류 추정)

  • Chang-Heon, LEE;Kwang-Il, KIM;Joo-Sung, KIM;Sang-Lok, YOO
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.299-309
    • /
    • 2022
  • Among the fishing vessels operating in the coastal waters, jigging fishing vessels were considered representative vessels engaged only by wind, sea, tide, and external force. Then, a fishing vessel with a length of shorter than 10 m from July 1, 2018 to August 5, 2019 was studied to obtain a drift prediction model by multiple regression analysis. In the correlation analysis between variables for leeway of speed and direction, the speed and direction of tidal seem to be the most affected in coastal waters. Therefore, it should be considered an explanatory variable when conducting drift tests. As a result of multiple regression analysis on the predicted equations of leeway speed and direction due to the external force on the drift of the fishing vessel, p < 0.000 was considered significant in the F-test, but the coefficient of determination was 55.2% and 37.8%. The effect on the predicted leeway speed was in the order of the tidal speed and current speed. In addition, the impact on the predicted leeway direction was in the order of the tidal speed and current speed. ŷ(m/s) = - 0.0011(x1) + 0.9206(x2) + 0.0001(x3) + 0.0002(x4) + 0.0050(x5) + 0.0529(x6) + 0.2457 ŷ(degree) = 0.6672(x1) + 93.1699(x2) + 0.0585(x3) - 0.0244(x4) - 1.2217(x5) + 4.6378(x6) - 0.0837

Wind Tunnel Evaluation of Aerodynamic Coefficients of Thuja occidentalis and Mesh Net (풍동실험을 통한 방풍용 서양측백나무와 농업용방풍망의 공기역학계수 평가)

  • Lee, Sojin;Ha, Taehwan;Seo, Siyoung;Song, Hosung;Woo, Saemee;Jang, Yuna;Jung, Minwoong;Jo, Gwanggon;Han, Dukwoo;Hwang, Okhwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.63-71
    • /
    • 2021
  • Windbreak forests, which have a windproof effect against strong winds, are known to be effective in reducing the spread of odors and dust emitted from livestock farms. The effect of reducing the spread of odors and dust can be estimated through numerical models such as computational fluid dynamics, which require aerodynamic coefficients of the windbreaks for accurate prediction of their performance. In this study, we aimed to evaluate the aerodynamic coefficients, Co, C1, C2, and α, of two windbreaks, Thuja occidentalis and a mesh net, through wind tunnel experiments. The aerodynamic coefficients were derived by the relation between the incoming wind speed and the pressure loss due to the windbreaks which was measured by differential pressure sensors. In order to estimate the change in the aerodynamic coefficient concerning various leaf density, the experiments were conducted repeatedly by removing the leaves gradually in various stages. The results showed that the power law regression model more suitable for coefficient evaluation compared to the Darcy-Forchheimer model.

Machine Learning Based Model Development and Optimization for Predicting Radiation (방사선량률 예측을 위한 기계학습 기반 모델 개발 및 최적화 연구)

  • SiHyun Lee;HongYeon Lee;JungMin Yeom
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.551-557
    • /
    • 2023
  • In recent years, radiation has become a socially important issue, increasing the need for accurate prediction of radiation levels. In this study, machine learning-based models such as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost, and LightGBM, which predict the dose rate by time(nSv h-1) by selecting only important variables, were used, and the correlation between temperature, humidity, cumulative precipitation, wind direction, wind speed, local air pressure, sea pressure, solar radiation, and radiation dose rate (nSv h-1) was analyzed by collecting weather data and radiation dose rate for about 6 months in Jangseong, Jeollanam-do. As a result of the evaluation based on the RMSE (Root Mean Squared Error) and R-Squared (R-Squared coefficient of determination) scores, the RMSE of the XGBoost model was 22.92 and the R-Squared was 0.73, showing the best performance among the models used. As a result of optimizing hyperparameters of all models using the GridSearch method and comparing them by adding variables inside the measuring instrument, it was confirmed that the performance improved to 2.39 for RMSE and 0.99 for R-Squared in both XGBoost and LightGBM.

Assessment of Performance on the Asian Dust Generation in Spring Using Hindcast Data in Asian Dust Seasonal Forecasting Model (황사장기예측자료를 이용한 봄철 황사 발생 예측 특성 분석)

  • Kang, Misun;Lee, Woojeong;Chang, Pil-Hun;Kim, Mi-Gyeong;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.149-162
    • /
    • 2022
  • This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.

A study on road ice prediction algorithm model and road ice prediction rate using algorithm model (도로 노면결빙 판정 알고리즘 연구와 알고리즘을 활용한 도로 결빙 적중률 연구)

  • Kang, Moon-Seok;Lim, Hee-Seob;Kwak, A-Mi-Roo;Lee, Geun-hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1355-1369
    • /
    • 2021
  • This study improved the algorithm for the road ice prediction algorithm and analyzed the prediction rate when comparing actual field measurement data and algorithm prediction value. For analysis, road and weather conditions were measured in Geumdong-ri, Sinbuk-myeon, Pocheon-si. First algorithm selected previous research result algorithm. And the 4th algorithm was improved according to the actual freezing conditions and measured values. Finally, five algorithms were developed: freezing by condensation, freezing by precipitation, freezing by snow, continuous freezing, and freezing by wind speed. When forecasting using an algorithm at the Pocheon site, the freezing hit rate was improved to 93.2%. When calculating the combination ratio for the algorithm. the algorithm for freezing due to condensation and the continuation of the frozen state accounted for 95.7%.

Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation (일기 예보와 예측 일사 및 일조를 이용한 태양광 발전 예측)

  • Shin, Dong-Ha;Park, Jun-Ho;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2017
  • Photovoltaic generation which has unlimited energy sources are very intermittent because they depend on the weather. Therefore, it is necessary to get accurate generation prediction with reducing the uncertainty of photovoltaic generation and improvement of the economics. The Meteorological Agency predicts weather factors for three days, but doesn't predict the sunshine and solar radiation that are most correlated with the prediction of photovoltaic generation. In this study, we predict sunshine and solar radiation using weather, precipitation, wind direction, wind speed, humidity, and cloudiness which is forecasted for three days at Meteorological Agency. The photovoltaic generation forecasting model is proposed by using predicted solar radiation and sunshine. As a result, the proposed model showed better results in the error rate indexes such as MAE, RMSE, and MAPE than the model that predicts photovoltaic generation without radiation and sunshine. In addition, DNN showed a lower error rate index than using SVM, which is a type of machine learning.

Short Term Forecast Model for Solar Power Generation using RNN-LSTM (RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델)

  • Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.233-239
    • /
    • 2018
  • Since solar power generation is intermittent depending on weather conditions, it is necessary to predict the accurate generation amount of solar power to improve the efficiency and economical efficiency of solar power generation. This study proposes a short - term deep learning prediction model of solar power generation using meteorological data from Mokpo meteorological agency and generation data of Yeongam solar power plant. The meteorological agency forecasts weather factors such as temperature, precipitation, wind direction, wind speed, humidity, and cloudiness for three days. However, sunshine and solar radiation, the most important meteorological factors for forecasting solar power generation, are not predicted. The proposed model predicts solar radiation and solar radiation using forecast meteorological factors. The power generation was also forecasted by adding the forecasted solar and solar factors to the meteorological factors. The forecasted power generation of the proposed model is that the average RMSE and MAE of DNN are 0.177 and 0.095, and RNN is 0.116 and 0.067. Also, LSTM is the best result of 0.100 and 0.054. It is expected that this study will lead to better prediction results by combining various input.

Analysis of Meteorological Features and Prediction Probability Associated with the Fog Occurrence at Chuncheon (춘천의 안개발생과 관련된 기상특성분석 및 수치모의)

  • Lee Hwa Woon;Lee Kwi Ok;Baek Seung-Joo;Kim Dong Hyeok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2005
  • In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.

Prediction of spatio-temporal AQI data

  • KyeongEun Kim;MiRu Ma;KyeongWon Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.119-133
    • /
    • 2023
  • With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has increased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.