• 제목/요약/키워드: Wind speed and direction

검색결과 624건 처리시간 0.027초

CFD 시뮬레이션을 이용한 풍하중 산정 시 변동풍속 프로파일에 관한 연구 (A Study on Fluctuating Wind Profile in CFD Simulation for Evaluating Wind Load)

  • 전두진;한상을
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.51-59
    • /
    • 2021
  • In this paper, the effect of the turbulence intensity in across-wind direction on the wind load in CFD(Computational fluid dynamics) simulation was analyzed. 'Ansys fluent' software was used for CFD simulation. And the fluctuating wind speed applied to the simulation was generated according to Korean Design Standard and Von Karman wind turbulence model. The turbulence intensity in across-wind direction for simulation was applied from 0 to 100% of the turbulence intensity in along-wind direction. The analysis results showed that the turbulence intensity in across-wind direction had a particularly great effect on the wind load in across-wind direction.

입력변수의 조건에 따른 대기확산모델의 민감도 분석 (Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable)

  • 정진도;김장우;김정태
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

A data-driven method for the reliability analysis of a transmission line under wind loads

  • Xing Fu;Wen-Long Du;Gang Li;Zhi-Qian Dong;Hong-Nan Li
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.461-473
    • /
    • 2024
  • This study focuses on the reliability of a transmission line under wind excitation and evaluates the failure probability using explicit data resources. The data-driven framework for calculating the failure probability of a transmission line subjected to wind loading is presented, and a probabilistic method for estimating the yearly extreme wind speeds in each wind direction is provided to compensate for the incompleteness of meteorological data. Meteorological data from the Xuwen National Weather Station are used to analyze the distribution characteristics of wind speed and wind direction, fitted with the generalized extreme value distribution. Then, the most vulnerable tower is identified to obtain the fragility curves in all wind directions based on uncertainty analysis. Finally, the failure probabilities are calculated based on the presented method. The simulation results reveal that the failure probability of the employed tower increases over time and that the joint probability distribution of the wind speed and wind direction must be considered to avoid overestimating the failure probability. Additionally, the mixed wind climates (synoptic wind and typhoon) have great influence on the estimation of structural failure probability and should be considered.

LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석 (Analysis on Factors Influencing on Wind Power Generation Using LSTM)

  • 이송근;최준영
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.

Wind Power Pattern Forecasting Based on Projected Clustering and Classification Methods

  • Lee, Heon Gyu;Piao, Minghao;Shin, Yong Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.283-294
    • /
    • 2015
  • A model that precisely forecasts how much wind power is generated is critical for making decisions on power generation and infrastructure updates. Existing studies have estimated wind power from wind speed using forecasting models such as ANFIS, SMO, k-NN, and ANN. This study applies a projected clustering technique to identify wind power patterns of wind turbines; profiles the resulting characteristics; and defines hourly and daily power patterns using wind power data collected over a year-long period. A wind power pattern prediction stage uses a time interval feature that is essential for producing representative patterns through a projected clustering technique along with the existing temperature and wind direction from the classifier input. During this stage, this feature is applied to the wind speed, which is the most significant input of a forecasting model. As the test results show, nine hourly power patterns and seven daily power patterns are produced with respect to the Korean wind turbines used in this study. As a result of forecasting the hourly and daily power patterns using the temperature, wind direction, and time interval features for the wind speed, the ANFIS and SMO models show an excellent performance.

Towards a revised base wind speed map for the United Kingdom

  • Miller, Craig A.;Cook, Nicholas J.;Barnard, Richard H.
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.197-212
    • /
    • 2001
  • Observations of extreme wind speeds in the United Kingdom from 1970 to 1980, corrected for the influence of upwind ground roughness and topography, have been analysed using the recently-developed "Improved Method of Independent Storms" (IMIS). The results have been used to compile two new maps of base wind speed and to confirm the climatic factors in current use. One map is 'irrespective' of wind direction and the other is 'equally weighted' by direction. The 'equally weighted' map is expected to be more consistently reliable and appropriate for use with the climatic factors for the design of buildings and structures.

An Efficient Method to Obtain Wind Speed Gradient with Low PRF Radar

  • 이종길
    • 한국정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.28-33
    • /
    • 2004
  • 풍속 및 바람 방향의 급격한 변화에 의한 기상위험 현상을 탐지하기 위해서는 공간상에서 풍속의 변화정도를 측정하는 것이 매우 중요하다. 이러한 기상현상들에서 전형적으로 내재된 높은 풍속의 측정을 위해서는 높은 PRF를 갖는 레이다를 필요로 한다. 그러나 공간상의 풍속의 변화정도를 예측하는데 있어서 이러한 큰 풍속의 절대적인 측정값이 꼭 필요한 것은 아니다. 따라서 본 논문에서는 실제적인 측면에서 매우 유용한 낮은 PRF를 갖는 레이다를 이용하여 풍속의 공간 변화율을 얻는 방법을 제안하였다.

우리나라 근해구역에 있어서의 월별 바람분포의 기후학적 특성 (Climatological Characteristics of Monthly Wind Distribution in a Greater Coasting Area of Korea)

  • 설동일
    • 해양환경안전학회지
    • /
    • 제12권3호
    • /
    • pp.185-192
    • /
    • 2006
  • 풍향 풍속 분포는 해파의 형성 및 발달과 밀접히 관련되어 있어 선박의 안전 운항에 있어서 매우 중요하다. 이 연구에서는 11년간(1985-1995년)의 ECMWF(유럽중기예보센터) 객관해석 자료를 이용하여 항행구역상 근해구역에서의 기후학적인 바람분포 특성을 월별로 조사, 분석하였다. 한후기인 10월에서 3월까지의 풍향분포는 거의 비슷하며, 1월은 풍속이 가장 강하다 북위 30도 이북의 북서 내지 서북서풍과 대만해협 및 남중국해의 북동풍은 지속적이고 매우 강한 특성을 보인다. 6-8월의 풍향분포는 거의 유사하며 남중국해에서의 남서 내지 남남서풍은 강하고, 남반구에서는 강한 남동무역풍이 존재한다 4월, 5월 및 9월은 전반적으로 약한 풍속분포를 보인다

  • PDF

Analysis of spraying performance of agricultural drones according to flight conditions

  • Dae-Hyun Lee;Baek-Gyeom Seong;Seung-Woo Kang;Soo-Hyun Cho;Xiongzhe Han;Yeongho Kang;Chun-Gu Lee;Seung-Hwa Yu
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.427-435
    • /
    • 2023
  • This study was conducted to evaluate the spraying performance according to the flight conditions of agricultural drones for the development of a variable control system. The analyzed flight conditions comprised six factors: spraying direction, flight speed, altitude, wind speed, wind direction, and rotor rotational speed. The ratio of the area sprayed on the water-sensitive paper was used as the coverage, and the distribution and amount of the coverage were evaluated. The coverage distribution based on the distance from the drone was used to evaluate a spray pattern, and the distribution was expressed as a Gaussian function approximation. In addition, the probability distribution based on coverage was expressed as the cumulative probability via Gamma function approximation to analyze the spraying efficiency in the target area. The results showed that the averaged coverage decreased significantly as the flight speed and wind speed increased, and the wind direction changed the spray pattern without a coverage decrease. This study contributes to the development of a control technique for the precision control system of agricultural drones.

도시개발에 따른 국지 바람장 분석 (An Analysis of Local Wind Field based on Urban Development)

  • 송동용
    • 환경영향평가
    • /
    • 제20권2호
    • /
    • pp.133-140
    • /
    • 2011
  • A numerical study with Envi-met model is experimented to investigate the characteristics of wind pattern in Gangwon innovation city. In all case, most conditions such as wind speed, temperature, and surface are considered as the same, but wind direction is the only different factor. The wind directions considered in this study have a meaning of prevailing wind direction. When the prevailing wind with the direction of $247^{\circ}$ blows into the city, the ventilation passage toward the outside of city is formed and the stagnation of air is not expressed. In case of having the direction of $270^{\circ}$, most evident ventilation passages are composed. When the inflow wind direction is the north, $0^{\circ}$, there is some possibility of stagnation phenomenon. The case where the representative wind direction of three kind will flow with development, in compliance with the building is caused by with screening effect of some and shows a true stagnation phenomenon, wishes in the park and flowing water and the greens area to be for a long time formed and the wind direction is maintained.