• 제목/요약/키워드: Wind prediction model

검색결과 560건 처리시간 0.026초

Wind Speed Prediction using WAsP for Complex Terrain (복합지형에 대한 WAsP의 풍속 예측성 평가)

  • Yoon, Kwang-Yong;Yoo, Neung-Soo;Paek, In-Su
    • Journal of Industrial Technology
    • /
    • 제28권B호
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Wind Speed Prediction using WAsP for Complex Terrain (WAsP을 이용한 복잡지형의 풍속 예측 및 보정)

  • Yoon, Kwang-Yong;Paek, In-Su;Yoo, Neung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model (LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석)

  • Minsang Kang;Eunkuk Son;Jinjae Lee;Seungjin Kang
    • Journal of Wind Energy
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

Comparison of MLR and SVR Based Linear and Nonlinear Regressions - Compensation for Wind Speed Prediction (MLR 및 SVR 기반 선형과 비선형회귀분석의 비교 - 풍속 예측 보정)

  • Kim, Junbong;Oh, Seungchul;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권5호
    • /
    • pp.851-856
    • /
    • 2016
  • Wind speed is heavily fluctuated and quite local than other weather elements. It is difficult to improve the accuracy of prediction only in a numerical prediction model. An MOS (Model Output Statistics) technique is used to correct the systematic errors of the model using a statistical data analysis. The Most of previous MOS has used a linear regression model for weather prediction, but it is hard to manage an irregular nature of prediction of wind speed. In order to solve the problem, a nonlinear regression method using SVR (Support Vector Regression) is introduced for a development of MOS for wind speed prediction. Experiments are performed for KLAPS (Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea. The MLR and SVR based linear and nonlinear methods are compared to each other for prediction accuracy of wind speed. Also, the comparison experiments are executed for the variation in the number of UM elements.

Performance Evaluation of Stacking Models Based on Random Forest, XGBoost, and LGBM for Wind Power Forecasting (Random Forest, XGBoost, LGBM 조합형 Stacking 모델을 이용한 풍력 발전량 예측 성능 평가)

  • Hui-Chan Kim;Dae-Young Kim;Bum-Suk Kim
    • Journal of Wind Energy
    • /
    • 제15권3호
    • /
    • pp.21-29
    • /
    • 2024
  • Wind power is highly variable due to the intermittent nature of wind. This can lead to power grid instability and decreased efficiency. Therefore, it is necessary to improve wind power prediction performance to minimize the negative impact on the power system. Recently, wind power prediction using machine learning has gained popularity, and ensemble models in machine learning have shown high prediction accuracy. RF, GB, XGB and LGBM are decision tree-based ensemble models and have high predictive performance in wind power, but these models have problems from over-fitting and strong dependence on certain variables. However, the stacking model can improve prediction performance by combining individual models and compensate for the shortcomings of each model. In this study, The MAE of RF, XGB and LGBM is 310.42 kWh, 217.07 kWh and 265.20 kWh, respectively, while the stacking model based on RF, XGB and LGBM is 202.33 kWh. Stacking models can improve prediction performance. Finally, it is expected to contribute to electricity supply and demand planning.

A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju (제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구)

  • Lee, Young-Mi;Yoo, Myoung-Suk;Choi, Hong-Seok;Kim, Yong-Jun;Seo, Young-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제59권12호
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

Fuzzy Modeling and Robust Stability Analysis of Wind Farm based on Prediction Model for Wind Speed (풍속 예측모델 기반 풍력발전단지의 퍼지 모델링 및 강인 안정도 해석)

  • Lee, Deogyong;Sung, Hwa Chang;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제20권1호
    • /
    • pp.22-28
    • /
    • 2014
  • This paper proposes the fuzzy modeling and robust stability analysis of wind farm based on prediction model for wind speed. Owing to the sensitivity of wind speed, it is necessary to study the dynamic equation of the variable speed wind turbine. In this paper, based on the least-square method, the wind speed prediction model which is varied by the surrounding environment is proposed so that it is possible to evaluate the practicability of our model. And, we propose the composition of intelligent wind farm and use the fuzzy model which is suitable for the design of fuzzy controller. Finally, simulation results for wind farm which is modeled mathematically are demonstrated to visualize the feasibility of the proposed method.

An improved method for predicting recurrence period wind speed considering wind direction

  • Weihu Chen;Yuji Tian;Yingjie Zhang
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.85-100
    • /
    • 2024
  • In light of extreme value distribution probability, an improved prediction method of the Recurrence Period Wind Speed (RPWS) is constructed considering wind direction, with the Equivalent Independent Wind Direction Number (EIWDN) introduced as a parameter variable. Firstly, taking the RPWS prediction of Beijing city as an example, the traditional Cook method is used to predict the RPWS of each wind direction based on the measured wind speed data in Beijing area. On basis of the results, the empirical formulae to determine the parameter variables are fitted to construct an improved expression of the non-exceedance probability of the RPWS. In this process, the statistical model of the optimal threshold is established, and thus the independent wind speed samples exceeding the threshold are extracted and fitted to follow the Generalized Pareto Distribution (GPD) model for analysis. In addition, the Extreme Value Type I (EVT I) distribution model is used to predict and analyze the RPWS. To verify its wide applicability, the improved method is further used in cities like Jinan, Nanjing, Wuxi, Shanghai and Shenzhen to predict and analyze the RPWS of each wind direction, and the prediction results are compared against those gained via the traditional Cook method and the whole direction. Results show that the 50-year RPWS results predicted by the improved method are basically consistent with those predicted by the traditional method, and the RPWS prediction values of most wind directions are within the envelope range of the whole wind direction prediction value. Compared with the traditional method, the improved method can readily predict the RPWS under different return periods through empirical formulae, and avoid the repeated operation process and some assumptions in the traditional Cook method, and then improve the efficiency of prediction. In addition, the improved RPWS prediction results corresponding to the GPD model are slightly larger than those of the EVT I distribution model.

Estimation of peak wind response of building using regression analysis

  • Payan-Serrano, Omar;Bojorquez, Eden;Reyes-Salazar, Alfredo;Ruiz-Garcia, Jorge
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.129-137
    • /
    • 2019
  • The maximum along-wind displacement of a considerable amount of building under simulated wind loads is computed with the aim to produce a simple prediction model using multiple regression analysis with variables transformation. The Shinozuka and Newmark methods are used to simulate the turbulent wind and to calculate the dynamic response, respectively. In order to evaluate the prediction performance of the regression model with longer degree of determination, two complex structural models were analyzed dynamically. In addition, the prediction model proposed is used to estimate and compare the maximum response of two test buildings studied with wind loads by other authors. Finally, it was proved that the prediction model is reliable to estimate the maximum displacements of structures subjected to the wind loads.

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.