Acknowledgement
본 연구는 한국동서발전 "풍력발전기 출력저하 및 누적피로하중 예측기술 개발"의 지원을 받아 수행한 연구 과제입니다. (과제번호 : C-2023-05). 그리고 풍력발전 데이터를 제공해 준 제주 에너지 공사에 감사드립니다.
References
- Mingli, Z,, Xu, H., Jianyuan, X. and Yun, T., "Study on application of the forecasting system for wind farm power," in Proceedings of the 2010 2nd International Conference on Signal Processing Systems, pp. 198-201
- Optis, M. and Perr-Sauer, J., "The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production", Renewable and Sustainable Energy Reviews, Volume 112, Pages 27-41
- Leo, B., "Bagging predictors", Machine learning, 24, 123-140.
- Heinermann, J. and Kramer, O., "Machine learning ensembles for wind power prediction", Renewable Energy, Volume 89, Pages 671-679
- Demollia, H., Dokuzb, S. A., Ecemisb, A. and Murat Gokcekc, "Wind power forecasting based on daily wind speed data using machine learning algorithms.", Energy Conversion and Management, Vol. 198, pp. 111823
- Lee, J. H., Wang, W., Harrou, F. and Ying, Sun, "Wind power prediction using ensemble learning-based models.", IEEE Access, Vol. 8, pp. 61517-61527, 2020
- Wangjie, L. and Jia, L., "Wind Power Prediction Based on the Stacking Model of XGBoost and Random Forest." 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2022.
- Jeong, H. S., Kim, Y. H. and Choi, H. W., "Characteristics of Wind Environment in Dongbok.Bukchon Wind Farm on Jeju", New & Renewable Energy, Vol 18, No. 1, pp.1-16
- Kim, D. Y., Kim, Y. H. and Kim, B. S., "Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear." Energy Volume 214, 119051
- Leo, B., "Random forests", Machine learning, 2001, Vol. 45, pp. 5~32.
- Singh, U.. and Rizwan, M., "SCADA system dataset exploration and machine learning based forecast for wind turbines.", Results in Engineering, Volume 16, December 2022
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T. Y., "Lightgbm: A highly efficient gradient boosting decision tree." Advances in neural information processing systems 30, Long Beach, CA, USA. 4-9 DEC 2017
- Pavlyshenko, B., "Using stacking approaches for machine learning models." 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21-25 August 2018
- Yang, L. and Shami, A., "On hyperparameter optimization of machine learning algorithms: Theory and practice", Neurocomputing, Volume 415, 20 November 2020, Pages 295-316