• 제목/요약/키워드: Wind power limit

검색결과 69건 처리시간 0.021초

해상풍력발전시스템 타워서비스리프트 설계 및 구조해석 (Design and Structure Analysis of a Tower Service Lift for Offshore Wind Power System)

  • 최영도;손성우;장호철;최낙준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.101-108
    • /
    • 2012
  • 본 연구 결과는 해상풍력발전시스템 타워 내부에 설치하는 서비스리프트의 설계 및 구조해석에 대한 내용이며, 공학적 설계법 및 수치해석에 의한 구조해석을 통하여 서비스리프트의 안정성 및 신뢰성을 확인하였다. 설계의 주된 내용은 설계 허용한계 이내에서 만족스러운 성능으로 지상으로부터 타워상부의 해상풍력터빈 너셀까지 작업자와 수리보수용 장비를 안전하게 수송할 수 있는 충분한 능력을 확보하는 것이다. 구조해석을 통하여 서비스리프트 캐빈 및 안전장치의 총변형량과 등가응력에 대해서 검토하여 설계 시 적용한 안전율의 타당성을 검토하였다.

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • 제17권2호
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

배전계통에서의 분산전원 도입운용 관리방법 : LDC 운전을 하지 않을 경우 (A Control Method of Distributed Generation System Which is Connected to Power Distribution System : Without LDC Operation)

  • 정원재;김태응;김재언
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.231-233
    • /
    • 2001
  • Nowadays, small scale DGS(Distributed Generation System), as a wind power generation or photovoltaic generation, becomes to be introduced into the power distribution system. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers. So, it is necessary to determine the permissible operation limit of the introduced DGS for proper voltage in distribution system. In this paper computes permissible operation limit of DGS when the DGS is connected to power distribution system using fixed tap(without LDC operation). For this simulation, KEPCO distribution system is used.

  • PDF

Optimal Reserve Allocation to Maximize Kinetic Energy in a Wind Power Plant

  • Yoon, Gihwan;Lee, Hyewon;Lee, Jinsik;Yoon, Gi-Gab;Park, Jong Keun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1950-1957
    • /
    • 2015
  • Modern wind generators (WGs) are forced or encouraged to participate in frequency control in the form of inertial and/or primary control to improve the frequency stability of power systems. To participate in primary control, WGs should perform deloaded operation that maintains reserve power using speed and/or pitch-angle control. This paper proposes an optimization formulation that allocates the required reserve to WGs to maximize the kinetic energy (KE) stored in a wind power plant (WPP). The proposed optimization formulation considers the rotor speed margin of each WG to the maximum speed limit, which is different from each other because of the wake effects in a WPP. As a result, the proposed formulation allows a WG with a lower rotor speed to retain more KE in the WPP. The performance of the proposed formulation was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed formulation retains the maximum amount of KE with the same reserve and successfully increases the frequency nadir in a power system by releasing the stored KE in a WPP in the case of a disturbance.

배전 선로에 연계된 다수대의 변동성 재생에너지 발전 시스템의 출력 유효전력 변동에 따른 무효전력 제어를 이용한 전압 변동 보상 (Compensation of Voltage Variation Using Active Power-Dependent Reactive Power Control with Multiple VRE Systems Connected in a Distribution Line)

  • 이상훈;김수빈;송승호
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.47-56
    • /
    • 2018
  • This paper introduces an active power dependent standard characteristic curve, Q(P) to compensate for voltage variations due to the output of distributed generation. This paper presents an efficient control method of grid-connected inverters by comparing and analyzing voltage variation magnitude and line loss according to the compensation method. Voltage variations are caused not only by active power, but also by the change of reactive power flowing in the line. In particular, the system is in a relatively remote place in a coastal area compared with existing power plants, so it is relatively weak and may not be suitable for voltage control. So, since it is very important to keep the voltage below the normal voltage limit within the specified inverter capacity and to minimize line loss due to the reactive power. we describe the active power dependent standard characteristic curve, Q(P) method and verify the magnitude of voltage variation by simulation. Finally, the characteristics of each control method and line loss are compared and analyzed.

풍력발전시스템이 연계된 계통의 과도상태해석 (Transient State Analysis of Network Connected to Wind Generation System)

  • 김세호
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.29-35
    • /
    • 2003
  • Generator for wind power can be either synchronous or asynchronous (induction) types. Induction and synchronous generators behave in a different way when subjected to severe faults. Induction generators does not have an angle stability limit and short circuit in the neighborhood of an Induction generator causes the demagnetization of the machine when the fault is cleared, the voltage raises slowly, while the grid contributes with reactive power to the generator and the magnetic flux recovers. On the other hand in the synchronous generators the recovery of the voltage is immediate, since the excitation of the rotor angle comes from an independent circuit. This paper shows the result of the transient state analysis in the network connected to wind generation system Several case studies have been conducted to determine the effect of the clearing time of a fault on the network stability. It has been found that the critical clearing time can be as low as 61ms in the case of induction generator compared to 370ms in the case of synchronous generator.

고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가 (Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids)

  • 이두영;정진성;김영대;방지예
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

Describing Function Method를 이용한 송전선의 전선도약(Galloping)현상 해석에 관한 연구 (The Analysis of Power Line Galloping by Describing Function Method)

  • 노창주;박한석;변기식
    • 대한전기학회논문지
    • /
    • 제41권4호
    • /
    • pp.339-345
    • /
    • 1992
  • Estimates of maximum amplitudes of conductor galloping are needed in order to determine appropriate phase-to-phase clearances on the overhead lines. One approach to obtaining these estimates is through the use of mathematical models of conductor galloping. Unfortunately, the models that consider both vertical conductor motion (Den Hartog type) and torsional conductor motion are often too complex for practical use. However, the estimates of maximum amplitude obtained from galloping models that assume only vertical (Den Hartog type) conductor motion tend to be too conservative. This paper presents the DF method to obtain the estimates of the amplitude and the frequency of galloping limit cycle, along with the wind pressure at which they occur, from a nonlinear dynamic model that considers both Den Hartog type and torsional conductor motion. From these results, the useful data for the line design guide and further insight into the mechanism of the conductor galloping are obtained.

  • PDF

Magnetic Design of Flyback Type Snubber for IGCT Applications

  • Shirmohammadi, Siamak;Lama, Amreena;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2016
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of current's rising and peak over voltage across IGCT during turn on and off state, respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes flyback type snubber comprising two coils wound on a magnetic core. The flyback snubber not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Modern magnetic model using permeance-capacitance analogy leads to more accurate loss analysis of flyback type di/dt snubber circuit in 3-level NPC type back-to-back VSC. In turns, the comparison between conventional and flyback type snubber yield the effectiveness of proposed snubber in wind turbine systems.

  • PDF