• Title/Summary/Keyword: Wind power generation convergence technology

Search Result 21, Processing Time 0.02 seconds

Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind Hybrid Power Generation System (파력-해상풍력 복합발전시스템의 IEC61850기반 통합 SCADA시스템 개발)

  • Lee, Jae-Kyu;Lee, Sang-Yub;Kim, Tae-Hyoung;Ham, Kyung-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.811-818
    • /
    • 2016
  • This paper suggests a structure of power control system in floating wave-offshore wind hybrid power generation system. We have developed an unified SCADA(Supervisory Control and Data Acquisition) system which can be used to monitor and control PCS(Power Conversion System) based on IEC61850. The SCADA system is essential to perform the algorithm like proportional distribution and data acquisition, monitoring, active power, reactive power control in hybrid power generation system. IEC61850 is an international standard for electrical substation automation systems. It was made to compensate the limitations of the legacy industrial protocols such as Modbus. In order to test the proposed SCADA system and algorithm, we have developed the wind-wave simulator based Modbus. We have designed a protocol conversion device based on real-time Linux for the communication between Modbus and IEC61850. In this study, SCADA system consists of four 3MW class wind turbines and twenty-four 100kW class wave force generator.

Development of Modular Control System Based on Closed-Loop Control for Wind Farms

  • Ji, Hyunho;Kim, Taehyoung;Lim, Jeongtaek;Ham, Kyung Sun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.17-24
    • /
    • 2021
  • The use of renewable energy sources for power generation has been steadily increasing. Power generation using renewable energy has the advantage of not generating carbon but has the disadvantage of high volatility depending on the weather. This volatility makes stable power supply difficult. Curtailment is occurring to address volatility. Various facilities are operated together to solve the loss caused by the curtailment. The existing SCADA must be modified for turbine control reflecting the conditions of various facilities. However, since it is difficult to modify SCADA, a modular control system is required. In this study, we propose Modular Control System Based on Closed-Loop Control for Wind Farms. Since the control logic can be changed without modifying SCADA, it is easy to respond to changes. The developed modular control system was evaluated as a lab test and confirmed to operate smoothly. Through future research, the experiment will be conducted by applying a modular control system to the actual wind farm.

The Application of Monitoring System Methods of Photovoltaic-Wind Power Generation for Railway Switching Point Heating Using LabVIEW (LabVIEW를 이용한 철도 선로전환기 융설용 태양광-풍력 발전 모니터링 시스템의 적용 방법)

  • Kim, Dae-Nyeon;Kim, Deok-Hyun;Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.9-14
    • /
    • 2013
  • The monitoring system is an absolutely required system for improving a performance to consider the situation for the hybrid generation of the photovoltaic (PV) and wind power (WP) energy experimental research complex. This system is to monitor with the railroad switching point heating system using LabVIEW to the hybrid generation of the PV and WP. The monitoring system of this paper is a program monitoring the hour, day and total of the voltage and current that made from the hybrid generation of PV and WP. In experiment, we acquired the power data according to time at the day of PV and WP. We have confirmed the possibility of the real time monitoring system using LabVIEW with the railroad switching point heating system as the hybrid generation of the PV and WP.

Design of short-term forecasting model of distributed generation power for wind power (풍력 발전을 위한 분산형 전원전력의 단기예측 모델 설계)

  • Song, Jae-Ju;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.211-218
    • /
    • 2014
  • Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

Design Analysis of Substructure for Offshore Wind Pile Excavation (해상풍력 파일 굴착직경 결정을 위한 하부구조물 설계해석)

  • Lee, Gi-Ok;Sun, Min-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.48-55
    • /
    • 2019
  • With recent rapid increases in the power generation capacity of offshore wind power generators, reliable structural analysis of the large-scale infrastructure needed to install wind power generators at sea is required. Therefore, technology for heavy marine equipment such as barges and excavation equipment is needed. Under submarine conditions, rock drilling technology to install the substructure for offshore wind pile excavation is a very important factor in supporting a wind farm safely under dynamic loads over periods of at least 20 years. After investigating the marine environment and on-site ground excavation for the Saemangeum offshore wind farm, in this study we suggest.

Wind Power Pattern Forecasting Based on Projected Clustering and Classification Methods

  • Lee, Heon Gyu;Piao, Minghao;Shin, Yong Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • A model that precisely forecasts how much wind power is generated is critical for making decisions on power generation and infrastructure updates. Existing studies have estimated wind power from wind speed using forecasting models such as ANFIS, SMO, k-NN, and ANN. This study applies a projected clustering technique to identify wind power patterns of wind turbines; profiles the resulting characteristics; and defines hourly and daily power patterns using wind power data collected over a year-long period. A wind power pattern prediction stage uses a time interval feature that is essential for producing representative patterns through a projected clustering technique along with the existing temperature and wind direction from the classifier input. During this stage, this feature is applied to the wind speed, which is the most significant input of a forecasting model. As the test results show, nine hourly power patterns and seven daily power patterns are produced with respect to the Korean wind turbines used in this study. As a result of forecasting the hourly and daily power patterns using the temperature, wind direction, and time interval features for the wind speed, the ANFIS and SMO models show an excellent performance.

Group key management protocol adopt to cloud computing environment (클라우드 컴퓨팅 환경에 적합한 그룹 키 관리 프로토콜)

  • Kim, Yong-Tae;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models

  • Su, Hongsheng;Zhang, Zezhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.608-619
    • /
    • 2018
  • As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm's iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs.

A Study on Supporting Small and Medium Enterprises for the Development of Offshore Wind Industry (해상풍력산업 발전을 위한 중소·중견 기업 지원 방안 연구)

  • Choi, Young-Moon;Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.167-172
    • /
    • 2021
  • In the situation where expectations for the growth potential of the domestic offshore wind market are increasing due to the bright growth prospect of the global offshore wind market and the motivated plan of the Korean government, domestic and foreign literature on the direction of offshore wind power generation are examined for the successful development of domestic offshore wind power, the introduction of offshore wind power is diagnosed, and improvement plans are presented for the wind power-related system being promoted by the government. In addition, practical support measures are suggested to foster related SMEs. The results of the study are as follows. First, as technology development is mainly focused on large corporations, the development capacity of small and medium manufacturing industry is very low. Therefore, it is necessary to establish and operate a core center led by government agencies to provide technical support with the initiative of national research institutes and large corporations, and universities and national research institutes should strengthen the independence of small and medium-sized enterprises through training and research and development of professional manpower. Second, as a result of the survey on the practical support plan of the company, it was found that there is a need for various support for technology development and commercialization of produced parts.

Comparative Analysis of a Competitive Technology for Major Future Energy Resources

  • Koo Young-Duk;Kim Eun-Sun;Park Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.101-104
    • /
    • 2005
  • Recently advanced countries are making every effort to promote the efficiency of electric power production and supply, to deal with the environmental problems, and to develop the new energy. In particular, they are driving forward to develop various technologies for electric power in mid-long term, that are technology for building infrastructure of power transportation, establishing service network for account management using electronic technologies, elevating economic productivity by innovative electronic technologies, control-ling the discharge of global warming gas, using clean efficient energy, and so forth. However, power technology of Korea lagged behind than technology of advanced countries. Also, resources for developing power technology are limited in our country. Therefore, it is necessary to improve the efficiency of R&D investment. For it, our country must compare and analyze with technologies of advanced countries which are taking competitive advantage in the main future energy. Through comparative analysis, limited R&D resources of our country must be concentrated on technologies that can secure competitive advantage from now on.