• Title/Summary/Keyword: Wind power control

Search Result 769, Processing Time 0.028 seconds

Power Control of Three Phase PWM Converter for Small-scale Wind Power using Flux Weakening Control in Over Wind Speed Region (과풍속 영역에서의 약계자 제어를 이용한 풍력발전용 3상 PWM 컨버터의 출력제어)

  • Ku, Hyun-Keun;Kim, Jae-Heung;Lee, Hyung-Uk;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • This paper proposes the battery charging algorithm for small-scale wind power generator using three phase PWM converter. it is impossible to control output power of the converter in over wind speed region since back EMF of PMSG is higer than battery voltage. Therefore, battery charging algorithm is proposed to expand battery charging over wind speed region. The suggested method is using the q-axis current for battery charging in the rated wind speed region. In the over wind speed region after it lower back EMF of PMSG using d-axis current it can control output power of the converter. The validity of the proposed algorithm are verified by experiments.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.

Generator Speed Control Algorithm with Variable Wind Speed Emulation Using Wind Turbine Simulator (풍력 발전기 시뮬레이터를 이용한 풍속 변동 모의 및 발전기 속도 기준값 결정에 관한 연구)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho;Ryu, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.331-334
    • /
    • 2003
  • In this paper, on the subject of a speed control wind turbine, the type of wind speed reference decision between conventional MPPT tracking speed control and MPPT with LPF(Low Pass Filter) speed control algorithm are introduced and its performances are compared using a model based on MATLAB Simulink, and to get more realistic output data, the stored wind data as its wind speed input from 30kW wind power system in Buan, Haechang is used.

  • PDF

Determination of the HESS Capacity for Mitigation of Fluctuation of Wind Farm Output under Consideration of Disconnecting Wind Farm (풍력발전단지 탈락 시를 고려한 단지 출력 변동 저감을 위한 HESS의 용량 산정)

  • Kim, SeongHyun;Ko, JiHan;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.388-389
    • /
    • 2013
  • This paper presents the method for the fluctuation smoothing control by using relaxation time variable control of battery. When the output power of wind farm is changed suddenly, it is necessary to control the output power of wind farm. The smoothing relaxation time is changed within limits of battery output power. Using the hybrid energy storage system (HESS) combined with battery energy storage system and electric double layer capacitor, it is possible to control the output power of wind farm. The capacity of battery is determined by considering the case of the disconnecting wind farm from the grid. To verify the proposed method, simulations are carried out by using PSCAD/EMTDC with actual data of wind farm in the Jeju Island.

  • PDF

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

Maximum Output Power Control of Wind Generation System Using Fuzzy Control (퍼지제어를 이용한 풍력발전 시스템의 최대출력 제어)

  • Abo-Khalil, Ahmed. G.;Kim, Young-Sin;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.497-504
    • /
    • 2005
  • For maximum output power, wind turbines are usually controlled at the speed which is determined by the optimal tip-speed ratio. This method requires information of wind speed and the power conversion coefficient which is varied by the pitch angle control. In this paper, a new maximum output power control algorithm using fuzzy logic control is proposed, which doesn't need this information. Instead, fuzzy controllers use information of the generator speed and the output power. By fuzzy rules, the fuzzy controller produces a new generator reference speed which gives the maximum output power of the generator for variable wind speeds. The proposed algorithm has been implemented for the 3[kW] cage-type induction generator system at laboratory, of which results verified the effectiveness of the algorithm.

Power Output Control of Wind Generation System Through Energy Storage System and STATCOM (에너지저장장치 및 STATCOM을 이용한 풍력발전시스템의 출력제어 기법)

  • Kim, Jong-Yul;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1718-1726
    • /
    • 2010
  • Utilization of renewable energy is becoming increaingly important from the viewpoints of environmental protection and conservation of fossil fuel. However, the generating power of renewable energy is always fluctuating due to the environmental status. This paper presents a scheme for supervisory control of wind generation system with the energy storage and STATCOM to reduce the power variation. In this paper, we especially concentrate on constant power output control of wind generation system. In order to achieve this purpose, the coordinated control strategy between different types of energy storage system and reactive power compensation device. The proposed control scheme has been validated by PSCAD/EMTDC simulation. As a result, the proposed scheme can handle the power output of wind generation system with a constant value.

Voltage Impacts of a Variable Speed Wind Turbine on Distribution Networks

  • Kim, Seul-Ki;Kim, Eung-Sang
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.206-213
    • /
    • 2003
  • The main purpose of this paper is to present a simulation model for assessing the impacts of a variable speed wind turbine (VSWT) on the distribution network and perform a simulation analysis of voltage profiles along the wind turbine installed feeder using the presented model. The modeled wind energy conversion system consists of a fixed pitch wind turbine, a synchronous generator, a rectifier and a voltage source inverter (VSI). Detailed study on the voltage impacts of a variable speed wind turbine is conducted in terms of steady state and dynamic behaviors. Various capacities and different modes of variable speed wind turbines are simulated and investigated. Case studies demonstrate how feeder voltages are influenced by capacity and control modes of wind turbines and changes in wind speed under different network conditions. Modeling and simulation analysis is based on PSCAD/EMTDC a software package.

Direct Power Control Scheme of Improved Command Tracking Capability for PMSG MV Wind turbines

  • Kwon, Gookmin;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.361-362
    • /
    • 2015
  • This paper proposes a Direct Power Control (DPC) scheme of improved command tracking capability for Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbines. Benchmarking is performed based on a neutral point clamped three-level back-to-back type voltage source converter. It is introduced to design the DPC modeling and propose DPC scheme of a three-level NPC (3L-NPC) converter. During the fault condition in wind farms, the proposed control scheme directly controls the generated output power to the command value from the hierarchical wind farm controller. The proposed control scheme is compared with conventional control scheme as respect to loss and thermal analysis. The DPC scheme of improved command tracking capability is confirmed through PLECS simulations. Simulation result shows that proposed control scheme achieves a much shorter transient time in a step response of generated output power. The proposed control scheme makes it possible to provide a good dynamic performance for PMSG MV wind turbine to generate a high quality output power under grid fault condition.

  • PDF