• 제목/요약/키워드: Wind noise

검색결과 621건 처리시간 0.026초

자동차 선루프 틸트업 바람소리 연구 (A Study of The Tilt-up Sunroof Wind Noise)

  • 이명한;조문환;이강덕;최의성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.788-792
    • /
    • 2013
  • There are three significant noises from the sunroof while driving. Among them, sunroof tilt-up noise has mainly high-frequency characteristics in the side and rear openings of sunroof. Because of complex structures to operate sunroof, significant flow disturbance makes strong turbulent noise. In this study, sunroof tilt-up noise was predicted by using numerical simulation code and the results were compared with experimental data.

  • PDF

NREL Phase VI 수평축 풍력터빈의 저주파 공력소음 해석에 관한 수치적 연구 (A Numerical Study on Analysis of Low Frequency Aero-acoustic Noise for a HAWT of NREL Phase VI)

  • 모장오;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1170-1179
    • /
    • 2009
  • 본 연구의 목적은 수평축 풍력터빈인 NREL Phase VI를 대상으로 ANSYS FLUENT에서 제공하는 LES와 FW-H 상사식을 이용하여 풍력발전기로부터 방사되는 저주파 공력소음을 수치적으로 예측하는 것이다. 풍력발전기 공력소음에 관한 어떠한 실험적 자료가 존재하지 않으므로, 먼저 정격풍속에서 토크와 출력 등의 공력성능 수치결과를 실험결과와 비교하여 소음원 예측의 타당성을 검증한 후, 풍속 변화에 따른 공력소음 특성을 분석하였다. 그 결과 수치성능결과는 약0.8%이내에서 실험결과와 잘 일치하였다. 풍속이 증가함에 따라 사극자와 이극자에 의한 총음압레벨은 증가하는 경향을 나타내었다. 또한 풍력터빈 허브중심으로부터 거리가 증가함에 따라 원방에서는 $r^{-1}$, 근방에서는 $r^{-2}$에 비례하여 증가하는 것으로 나타났다. 그리고 거리가 두배 증가함에 따른 총음압레벨은 약 6dB 감소하였다.

해상 풍력 발전 JACKET의 고유 진동수에 관한 연구 (A Study of Natural Frequency of Offshore Wind Turbine JACKET)

  • 이정탁;손충렬;이강수;원종범;김상호;김태용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.434-438
    • /
    • 2006
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of Wind Turbine Jacket Type Tower model, and calculated that the stress values of Thrust Load, Wave Load, Wind Load, Current Loda, Gravity Load, etc., environment evaluation analysis during static Operating Wind Turbine Jacket Type Tower model, carried out of Natural Frequency analysis of total load case to stress matrix, Frequency calculated that calculated Add Natural Frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

해상 풍력 발전용 구조물 변화에 따른 고유진동해석 (A Study of Natural Frequency on Offshore Wind Turbine Structural Change)

  • 이강수;이정탁;손충렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1008-1016
    • /
    • 2007
  • The purpose of this paper is to investigate the Natural Frequency behavior characteristic of Wind Turbine Tower model, and calculated the stress values of thrust load, wave load, wind load, current load, and gravity load. The offshore Jacket Type Tower which was installed in Vitenam South China Sea is used for the study. Natural frequency and mode shape are calculated with commercial program using the measured vibration. The finite element analysis is performed with commercial F.E.M program(ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석 (Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility)

  • 김동만;김동현;김요한;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

캣워크 구조물의 공기역학적 특성 (Aerodynamic Characteristics of Catwalk Structures)

  • 이승호;이한규;권순덕;김종화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.105-110
    • /
    • 2011
  • Catwalk structures are temporary walk ways for erection of main cables in suspension bridge. The aerodynamic characteristics of the catwalk structures are not well studied even though the catwalk structures are sensitive to wind action because of its flexibility. Present study demonstrates technical results obtained from wind tunnel tests of various catwalk structures. To obtain the aerostatic force coefficients of the floor system of catwalk, 1/14 and 1/4 scaled partial rigid models were fabricated and tested at the wind tunnel. In order to investigate the Reynolds number effects, the aerostatic force coefficients were measured at various wind velocities ranged from 5m/s to 30m/s. The test results revealed that the Reynolds number effects on aerostatic coefficients were not significant for the catwalk floor systems. An empirical equation for aerostatic force coefficients of catwalk are proposed based on the measured results.

  • PDF

개선된 PID 제어기를 이용한 Wind Turbine의 피치 제어 (Pitch Control for Wind Turbine System using Advanced PID Controller)

  • 전종현;권오신;김진성;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.831-836
    • /
    • 2011
  • The study described in this paper is aimed to maintain a constant output of wind turbine system via pitch control of wind turbine using Advanced PID(APID) controller. In order to improve dynamic response characteristic in terms of pitch angle and disturbance reject, the APID controller is developed. The structure of the APID is composed with derivative P controller and new type of integral control action. This new improved integral control has concept of error window and weight function concept. The performance of the APID control technique is compared with those of conventional ones via simulation. Simulation results show that the proposed method is effective and enhanced the dynamic performance of the system.

  • PDF

타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석 (Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of Tower Stiffness)

  • 추헌호;심재박;류경중;김동현;김봉영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.602-606
    • /
    • 2011
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent reduced elastic tower is supported to the VAWT so that the elastic stiffness effect of the tower can be reflected to the present vibration experiment. Various excitation sources with aerodynamic forces are considered and the dominant operating vibration phenomena are physically investigated in detail.

  • PDF

해상 풍력 발전용 Tower의 고유 진동 해석에 관한 연구 (Study for Natural Frequency of Offshore Wind Turbine Tower)

  • 원종범;이강수;손충렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1296-1301
    • /
    • 2006
  • The Object of this paper which study for natural frequency of Offshore Wind Turbine Tower with Composite Material and Steel. The Composit Material Tower consist of shell type and stiffened shell type which is made by the method of Filament Winding. And the component of Composite material is used by the Roving RS220PE-535. The Steel Material Tower consist of shell type and stiffened shell type which is made of Mild steel. The Type of Stiffener is hats. This paper compare the Composit Material Offshore Wind Turbine Tower with the Steel Material Offshore wind Turbine Tower and study for Natural Frequency and Mode Shapes.

  • PDF

해상 풍력 발전 JACKET의 고유진동수에 관한 연구 (A Study of Natural Frequency of Offshore Wind Turbine JACKET)

  • 이강수;이정탁;손충렬
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.130-135
    • /
    • 2007
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of wind turbine jacket type tower model, and calculated that the stress values of thrust load, wave load, wind load, current loda, gravity load, etc., environment evaluation analysis during static operating wind turbine jacket type tower model, carried out of natural frequency analysis of total load case to stress matrix, frequency calculated that calculated add natural frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.