• Title/Summary/Keyword: Wind generation

Search Result 1,267, Processing Time 0.037 seconds

A Study on the Analysis of Correlation Decay Distance(CoDecDist) Model for Enhancing Spatial Prediction Outputs of Spatially Distributed Wind Farms (풍력발전출력의 공간예측 향상을 위한 상관관계감소거리(CoDecDist) 모형 분석에 관한 연구)

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.80-86
    • /
    • 2015
  • As wind farm outputs depend on natural wind resources that vary over space and time, spatial correlation analysis is needed to estimate power outputs of wind generation resources. As a result, geographic information such as latitude and longitude plays a key role to estimate power outputs of spatially distributed wind farms. In this paper, we introduce spatial correlation analysis to estimate the power outputs produced by wind farms that are geographically distributed. We present spatial correlation analysis of empirical power output data for the JEJU Island and ERCOT ISO (Texas) wind farms and propose the Correlation Decay Distance (CoDecDist) model based on geographic correlation analysis to enhance the estimation of wind power outputs.

Optimum Design of a Wind Power Generation System through Analysis of Wind Data (풍속자료(風速資料) 분석(分析)에 의한 풍역발전(風力發電)시스템 최적(最適) 설계(設計))

  • Lee, Chul-Hyung;Shin, Dong-Ryul
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.3-12
    • /
    • 1984
  • In this paper, how to design the wind power generation system is presented. It is shown that the wind system optimization can be achieved by consideration of the four factors; wind statistics, efficiency of conversion of wind energy to electrical energy, average annual energy extracted and load factor. The wind is characterized by a weibull probability function. The Weibull parameter is calculated for the characterizing wind and the primary design specification of ten different sites. Some graphs are presented, which can be used to design a wind system for maximum output of a specified load factor at given site. Two different systems, $V_c=0.4V_R$ and $V_c=0.5V_R$ are discussed, as samples, for investigation of the effects on the system through the variation of cut-in speed.

  • PDF

Comparative Analysis of 10 MW Superconducting Wind Power Generators with Three-phase and Nine-phase Armature Windings

  • Kim, Taewon;Woo, Sang-Kyun;Sung, Hae-Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.343-347
    • /
    • 2019
  • When referring to weight, volume, and efficiency, a SuperConducting Synchronous Generator (SCSG) is definitely superior to conventional generators as a large-scale wind power generation system. The SCSG is connected to a full power converter that transmits the energy from the SCSG to the power grid. To reduce the current stress and system cost, the SCSG which has nine-phase armature windings with three converters is used. This paper deals with a comparative analysis of 10 MW superconducting wind power generators with three-phase and nine-phase armature windings. The stator windings of SCSGs are of various types. Using the finite element method, SCSGs are analyzed and compared in terms of the weight and volume of SCSGs, the total length of the superconducting wire, harmonics, torque performance, and efficiency. The analyzed results will be effectively utilized to design large-scale superconducting generators for wind power generation systems.

A Study on DFIG Wind Power Generation System Modelling using Real-Wind Speed (실제 풍속을 이용한 DFIG 풍력발전시스템 구현에 관한 연구)

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.494_495
    • /
    • 2009
  • This paper presents a study of DFIG wind power generation system for real-time simulation. For real-time simulation, the real-time digital simulator (RTDS) and its user friendly interface simulation software (RSCAD) are used. 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. Stator-flux oriented vector control scheme is applied to stator, rotor side converter control, and back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for realistic and accurate simulation analysis. Block diagrams for DFIG and control scheme of stator, rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

  • PDF

Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System (복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Choi, Young-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

Generation Scheduling with Large-Scale Wind Farms using Grey Wolf Optimization

  • Saravanan, R.;Subramanian, S.;Dharmalingam, V.;Ganesan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1348-1356
    • /
    • 2017
  • Integration of wind generators with the conventional power plants will raise operational challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the Generation Scheduling (GS) among the online generating units has become crucial. This process can be formulated mathematically as an optimization problem. The GS problem of wind integrated power system is inherently complex because the formulation involves non-linear operational characteristics of generating units, system and operational constraints. As the robust tool is viable to address the chosen problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is chosen as the main optimization tool. The intended algorithm is implemented on the standard test systems and the attained numerical results are compared with the earlier reports. The comparison clearly indicates the intended tool is robust and a promising alternative for solving GS problems.

Voltage Quality Analysis of Low Voltage Customer Connected to the Wind Generation System (풍력발전시스템에 연계된 저압수용가의 전압품질 분석)

  • Kim Moon Chan;Kim Hyun Jong;Kim Tae Ik;Yang Ik Jun;Na Kyoung Yun;Kim Se Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.233-235
    • /
    • 2004
  • Operation of wind turbines has impacts on the voltage quantity at the connected electricity network. Increasing penetration of wind energy makes necessary to study the power quality regarding voltage variations(sag, swell, interruption) and presence of harmonics in the id. This paper investigates the voltage quality of low voltage customers connected to wind generation system. To study the influences of wind power generation to low voltage power system, voltage data are collected in three house using PQM(Power Quality Monitoring) equipment during one month and analyzed regarding voltage variation and harmonics

  • PDF

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

Modelling of 3MW wind power generation system using RTDS (RTDS를 이용한 3MW급 풍력 발전시스템 모델링에 관한 연구)

  • Park, Dae-Jin;Kim, Young-Ju;Ali, Mohd-Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.190-191
    • /
    • 2007
  • This paper proposes a novel simulation method of grid connected 3MW wind power generation system using RTDS(Real Time Digital Simulator). RTDS can perform the simulation as well as the experiment in real time. Also for the purpose of accurate simulation, real wind velocity is measured by anemometer. So measured wind velocity is applied to the simulation. And 3MW wind power generation system circuit is made by RSCAD.

  • PDF

A Study on the Rescheduling of Generation Considering Contingency in Power System with Wind Farms (풍력발전단지가 연계된 전력계통에서 상정고장을 고려한 발전력 재조정에 관한 연구)

  • Choi, Soo-Hyun;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.255-260
    • /
    • 2017
  • This paper studies on effective rescheduling of generation when the single line contingency has occurred in power system with wind farm. The suggested method is formulated to minimize the rescheduling cost of conventional and wind generators to alleviate congestion. The generator rescheduling method has been used with incorporation of wind farms in the power system. Since all sensitivity is different about congestion line, Line Outage Distribution Factor(LODF) and Generator Sensitivity Factor(GSF) is used to alleviate congestion. The formulation have been proccessed using linear programming(LP) optimization techniques to alleviate transmission congestion. The effectiveness of the proposed rescheduling of generation method has been analyzed on revised IEEE 30-bus systems.