• Title/Summary/Keyword: Wind field

Search Result 1,611, Processing Time 0.026 seconds

Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms (Sawtooth 진동 현상과 지자기 폭풍의 통계적 관계)

  • Kim, Jae-Hun;Lee, Dae-Young;Choi, Cheong-Rim;Her, Young-Tae;Han, Jin-Wook;Hong, Sun-Hak
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.157-166
    • /
    • 2008
  • We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME) and Co-rotating Interaction Region (CIR). Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME $({\sim}62%)$ than for storms driven by CIR $({\sim}30%)$. In addition, sawtooth oscillations occurred mainly $({\sim}82%)$ in the main phase of storms for CME-driven storms while they occurred mostly $({\sim}78%)$ during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to -15 to 0 nT and the solar wind speed was in the range of $400{\sim}700km/s$. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

Studies on the Desertification Combating and Sand Industry Development(I) - Present Status and Countermeasures for the Combating Desertification in China - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(I) - 중국(中國)의 사막화현황(沙漠化現況) 및 방지대책(防止對策) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Jeon, Gi-Seong;Kim, Kyung-Hoon;Choi, Hyung-Tae;Lee, Seung-Hyun;Lee, Byung-Kwon;Kim, So-Yeon;Lee, Sang-Ho;Jeon, Jeong-Ill
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.45-76
    • /
    • 2000
  • The purposes of this study were to investigate and understand the present status of various types of "deserts", such as sand desert, gravel desert, rock desert, earth desert, salt desert, desert, rocky desert, gobi desert, sandy desert, clay desert, etc., and the general countermeasures for the combating "desertification" "desertization", and to develop the technologies on the revegetation and restoration for the combating desertification in China. The methods of this study were mainly composed of field surveys on the several experimental sites and research institutes related to combating desertification in China, and examinations on the various technologies for the combating desertification at the Daxing Experimental Station of Beijing Forestry University. The conclusion from this study may be summarized as follows; 1. Status and tendency of desertification in China : China is one of the countries seriously threatened by desertification. Desertification affected areas in China are mainly distributed in arid, semi-arid and dry sub-humid areas in China, covering the most regions of the Northeast China (eastern region of Inner-Mongolia), the northern part of the North China (middle and western region of Inner-Mongolia, Shaanxi, Ningsha, Gansu) and the western part of the Northwest China (Xinzang, Qinghai, Xizang). The total area affected by desertification in China is approximately 2.622 million $km^2$. It covers 27.3% of the total territory of China. Until recently, it is estimated that the annual spreading ratio of desertification in China is 2,460 $km^2$. Therefore, desertification is mostly serious problems facing to the Chinese people. 2. The causes and environmental effect of desertification : The desertification in China is mainly caused by compound factors, including natural condition and human activities. In China, the desertification is started by the decrease of precipitation, continuous dry and drought, strong wind, wind and water erosion, land degradation and loss of natural vegetation caused by climate variation, and accelerated by the human activities, such as over-cultivating, over-grazing, over-cutting of woods, irrational use of water resources. Because desertification has affected the geographical features, soil nutrients contents, salinity, vegetation coverage and the functions of ecosystem, the environmental deteriorations in the desertification affected areas are very seriously. 3. The fundamental strategies of combating desertification in China are the increase of education and awareness of people through various mass media, the revision of laws to guarantee operation of Desertification Combating Law and to improve many relating laws and regulations, the application of advanced technologies and training of experts, the establishment of discriminative policies, and increasing arrangement of budget-investment, and so on. China, as a signed country in UNCCD, has made efforts for the combating desertification. Korea is also signed country in UNCCD, so we should play an important role in the desertification combating projects of China for the northest asia and global environmental conservation as well as environmental conservation of Korea.

  • PDF

Analysis of Thermal Environment Improving Effects of Green Curtain in Summer (Green Curtain 형식의 벽면녹화시스템을 통한 여름철 건물 실내 열환경 비교 분석)

  • Lee, Sunyoung;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.80-89
    • /
    • 2022
  • In order to solve the limitations of horizontal thermal environment improvement, this study compared the thermal environment of the indoor and outdoor of a building in summer according to the presence or absence of a green curtain, a vertical greening method. In the summer of 2021, the air temperature, relative humidity, wind speed, and shortwave and longwave radiation were measured at a central point inside a building and the grass field outside of the building to determine the human thermal sensation index, PET and UTCI. As a result, the green curtain showed an average 1.6℃ cooler air temperature during the daytime, but it did not have an effect at night. For relative humidity, it showed higher humidity indoors by an average of 5.6% and 1.0% during the daytime and at night, respectively. Wind speed was 1.4-1.8 ms-1 and 1.4-1.5 ms-1 higher outdoors on average during the daytime and at night, respectively, showing a high value outdoors regardless of whether a green curtain was installed. The green curtain showed an average indoor mean radiant temperature reduction effect of 4.7℃ during the daytime, but it did not have an effect at night. In PET and UTCI, the green curtain reduced the indoor PET by about a 1/3 level, an average of 2.1℃, and the indoor UTCI by about a 1/6 level, an average of 1.1℃, during the daytime. However, no effects appeared in PET and UTCI at night. For landscape planning, a green curtain can effectively modify the thermal environment during the daytime in summer.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

Meteorological and Climatic Characteristics for Improving Quality of Cultivation of Aronia in the Danyang area (단양지역 아로니아 재배 품질 향상을 위한 기상 및 기후학적 특성)

  • Moon, Yun Seob;Kang, Woo Kyeong;Jung, Okjin;Kim, Sun Mee;Kim, Da Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.481-495
    • /
    • 2017
  • The purpose of this study is to investigate and analyze the relationship between meteorologicalclimatic factors and fruit property data from Aronia sampling points during May to August 2016 in the Danyang area. For this purpose, we investigated the meteorological factor, the physicalchemical property of fruit and soil, and the property change of fruit according to the setting of rain and daylight shielding from Aronia sampling points. The result indicate that first, meteorologicalclimatic factors such as the maximum air temperature, the accumulated precipitation, the relative humidity, and daylight hours are a positive influence on products and maintenance of quality of Aronia as well as a suitable field for cultivating Aronia in the Danyang. However, a strong wind in April and May deeply affects the falling phenomenon of the flowering and blooming season. Second, the quality and products of Aronia show the high correlation coefficients of more than 0.9 with agricultural meteorologicalclimatic factors such as daily maximum temperature, daily soil temp, daily soil pH, cumulated precipitation, and daily soil humidity. Also, they can be predicted by the regression equations using these factors. Third, it is necessary to maintain the rain shielding in these fields because antocyanin and saccharinity components within Aronia decreased in case of heavy rainfalls. And, the result of regression analysis saccharinity and antocyanin within aronia from normal fields and rain shieldingfields at Aronia sampling points show a high correlation, respectively.

A Study on the Distribution Characteristics of Terpene at the Main Trails of Mt. Mudeung (무등산 주요 탐방로에서 테르펜 분포특성 연구)

  • Lee, Dae-Haeng;Kim, Min-Hee;Park, Ok-Hyun;Park, Kang-Soo;An, Sang-Su;Seo, Hee-Jeong;Jin, Seung-Hyun;Jeong, Won-Sam;Kang, Yeong-Ju;An, Ki-Wan;Kim, Eun-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.211-222
    • /
    • 2013
  • Objectives: A great number of people visit forests for their bountiful healing factors. We investigated the quantity of terpene and analyzed the correlations with meteorological and environmental factors at Mt. Mudeung in order to support public health. Methods: The terpene amounts were investigated along 11 main trails using stainless steel tube packed by Tenax TA (150 mg) and Carbopack B (130 mg) during March to November 2012. Terpene amounts of 20 species (${\alpha}$-pinene, camphene, etc.), and meteorological and environmental factors were investigated in the field. Results: Terpene of 16 species was released from the forest and total terpene amounts were 2,080 pptv at the site of Chamaecyparis obtusa, the highest among 11 sites, nearby the first reservoir on Mt. Mudeung. Terpene concentrations in the forest were nine to 23 times higher than found in urban areas. Total terpene amounts had positive correlations with temperature, humidity, carbon dioxide and oxygen (p<0.01) with $R^2$ of 0.345, 0.369, 0.591, 0.145, respectively, from April to July. Wind speed and solar radiation in the forest had a negative correlation with terpene amounts and showed statistical insignificance with p-values of 0.118 and 0.233, respectively. Conclusions: This study suggests that the amounts of terpene around Mt. Mudeung are indeed higher, so visitors may enjoy a therapeutic walk in the forest with a healing effect. These results showed the forest was very effective for improving human health.

Effect of Applied DC Electric Fields in Flame Spread over Polyethylene-Coated Electrical Wire (폴리에틸렌 피복전선 화염의 전파에 영향을 미치는 직류전기장의 인가 효과에 관한 실험적 연구)

  • Jin, Young-Kyu;Kim, Min-Kuk;Park, Jeong;Chung, Suk-Ho;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ${\pm}7$ kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet.

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.