• Title/Summary/Keyword: Wind farms

Search Result 275, Processing Time 0.027 seconds

Performance Analysis of the Powerline Communication for Condition Monitoring System of an MW Class Offshore Wind Turbine's Nacelle (MW급 해상풍력발전기 나셀의 상태 감시를 위한 전력선 통신 성능 분석)

  • Sohn, Kyung-Rak;Kim, Kyoung-Hwa;Jeong, Seong-Uk;Nam, Seung-Yun;Kim, Hyun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.3
    • /
    • pp.159-164
    • /
    • 2016
  • The goal of this study is to implement a communication system that can monitor the status of the nacelle using the power cable itself, without the dedicated communication lines such as an UTP cable and optical fiber for the offshore wind turbine. An inductive coupling powerline communication system for a MW class offshore wind turbine was proposed and its communication performance was demonstrated. The inductive couplers was designed for operation at up to 500 A using a ferrite composite materials. Field test was carried out on the wind farms of Jeju island. Using the iperf communication test program, we have obtained more than 15 Mbps data transmission rate through the 100 m power cable that was installed between the nacelle and the bottom of the power converter. In the data transmission stability test for a week, there was no failure ever. The minimum transmission rate was 15 Mbps and the average data rate was about 20 Mbps. Next, we have installed an infrared camera inside the nacelle in order to measure the temperature distribution and variation of the nacelle. The real-time thermal image taken by the camera was successfully sent to the monitoring system without error.

Spatial Distribution and Regional Characteristics of Meteorological Damages to Agricultural Farms in Korea (우리나라 농업기상재해의 공간 분포 및 지역 특성 분석)

  • Song, Inhong;Song, Jung Hun;Kim, Sang Min;Jang, Min Won;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.45-52
    • /
    • 2012
  • Along with global warming, ever intensifying weather events have increased damages to agricultural farms and facilities. The objective of this study was to investigate the spatial distribution and regional characteristics of agricultural damages by extreme weather events. Agricultural disaster statistics provided by the National Emergency Management Agency were summed over for a 13-year period from 1998 to 2010 and used for the spatial analysis. Two indices of damage area ration and property damage per unit area were introduced to quantify regional agricultural damages. As the results, farm inundation accounted for the largest area primarily damaged by typhoons with heavy rainfalls. Most property damages to farm lands originated from farm erosion in the alpine regions by localized guerrilla rains. The two major causes of damages to greenhouse and livestock facilities were typhoon with strong wind and winter blizzards. Gangwon was the province of the largest property loss mostly from farm land erosion losses, followed by Gyeongnam, Jeonnam, and Chungnam where losses to greenhouse and livestock facilities were relatively greater. Property loss per unit area was also the greatest for the Gangwon province (4.91 M\/ha), followed by Gyongnam and Chungnam of 2.20 and 1.50 M\/ha, respectively. Unit loss for greenhouse and livestock facilities was 13.3 M\/ha, approximately 13 times greater than that for farm land (1.06 M\/ha). The study findings indicated the importance of reducing highland farm erosion and reinforcing farming facilities structures for agricultural disaster management.

ICT-based Integrated Renewable Energy Monitoring System for Agricultural Products (ICT 기반 농작물 대상 재생에너지 통합 모니터링 시스템 개발)

  • Kim, Yu-Bin;Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.593-602
    • /
    • 2020
  • Recently, as research on smart farms has been actively conducted, systems for efficiently cultivating crops have been introduced and various energy systems using renewable energy such as solar, geothermal and wind power generation have been proposed to save the energy. In this paper, we propose a new and renewable energy convergence system for crops that provides energy independence and improved crop cultivation environment. First, we present LPWA-based communication node and gateway for ICT-based data collection. Then we propose an integrated monitoring server that collects energy data, crop growth data, and environmental data through a communication node and builds it as big data to perform optimal energy management that reflects the characteristics of the environment for cultivating crops. The proposed system is expected to contribute to the production of low-cost, high-quality crops through the fusion of renewable energy and smart farms.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

The Analysis of Oil Spill Spreading Using SAR Images (SAR영상을 이용한 유류 오염 분포 분석)

  • Kim Taerim;Lee Soo Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.38-48
    • /
    • 1999
  • The oil spill accident near Goeje Island on April 3, 1997 was analyzed using two RADARSAT SAR images. The first scene was acquired 3 days after the accident as an extended low beam mode and the second scene was acquired 12 hours after the first scene as a standard beam mode. The two scenes showed slicks not only by oil spills but also by oil spill look-alikes caused by wind sheltering, low wind, natural film, and etc. These slicks were analyzed and classified, and natural films produced from aquaculture farms around Goeje Island were also suggested as a strong candidate for slicks on SAR images. The study with two SAR imags indicated the oil spill patterns which spreaded to the southwest immediately after the accident and switched the direction to the east. The spreading patterns shown in two SAR images also showed good agreement with in-situ observations.

  • PDF

Introduction to Submarine Power Cable Detection Technology (해저 전력 케이블 탐지 기술 소개)

  • Daechul Kim;Hyeji Chae;Wookeen Chung;ChangBeom Yun;Jong Hyun Kim;Jeonghun Kim;Sungryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Offshore wind power is increasingly regarded as a viable solution for reducing greenhous emissions due to the construction of wind farms and their superior power generation efficiency. Submarine power cables play a crucial role in transmitting the electricity generated offshore to land. To monitor cables and identify points of failure, analyzing the location or depth of burial of submarine cables is necessary. This study reviewed the technology and research for detecting submarine power cables, which were categorized into seismic/acoustic, electromagnetic, and magnetic exploration. Seismic/acoustic waves are primarily used for detecting submarine power cables by installing equipment on ships. Electromagnetic and magnetic exploration detects cables by installing equipment on unmanned underwater vehicles, including autonomous underwater vehicles (AUV) and remotely operated vihicles (ROV). This study serves as a foundational resource in the field of submarine power cable detection.

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

Compressibility of fine-grained sediments based on pore water salinity changes

  • Junbong Jang;Handikajati Kusuma Marjadi
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2023
  • Coastal and offshore structures such as ports and offshore wind farms will often need to be built on fine-grained sediments. Geotechnical properties associated with sediment compressibility are key parameters for marine construction designs especially on soft grounds, which involve clay-mineral dominated fines that can consolidate and settle significantly in response to engineered and environmental loads. We conduct liquid limit tests and 1D consolidation tests with fine-grained soils (silica silt, mica, kaolin and bentonite) and biogenic soils (diatom). The pore fluids for the liquid limit tests include deionized water and a series of brines with NaCl salt concentrations of 0.001 m, 0.01 m, 0.1 m, 0.6 m and 2.0 m, and the pore fluids for the consolidation tests deionized water, 0.01 m, 0.6 m, 2 m. The salt concentrations help the liquid limits of kaolin and bentonite decrease, but those of diatom slightly increase. The silica silt and mica show minimal changes in liquid limit due to salt concentrations. Accordingly, compression indices of soils follow the trend of the liquid limit as the liquid limit determined the initial void ratio of the consolidation test. Diatoms are more likely to be broken than clastic sediments during to loading, and diatom-rich sediment is therefore generally more compressible than clastic-rich sediment.

Criterion for Operation of Fans to Reduce Heat Stress of Hanwoo (한우의 더위 스트레스를 경감하기 위한 송풍팬의 가동 기준)

  • Lee, Seung-Joo;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.101-106
    • /
    • 2012
  • Fans have been used to reduce heat stress of Hanwoo in summer, but a criterion to determine to operate or not operate them has not been developed yet. Therefore, this study was carried out to establish a criterion of fan operation to reduce heat stress of Hanwoo in summer. Respiration rate of Hanwoo, air temperature, wind speed and relative humidity were collected from Hanwoo farms in summer, 2010 and these data were used to analyze relationship between respiration rate and air temperature, relationship between respiration rate and wind speed, and relationship between respiration rate and relative humidity and so on. The results of this study that air temperature when is over $23^{\circ}C$ and wind speed is below 0.8 m/s affected the respiration rate of Hanwoo. On the other hand, relative humidity did not affect the respiration rate when is below 60%. The results of this study recommend that fans should be operated to reduce the heat stress of Hanwoo, when only air temperature in farm is over $23^{\circ}C$.