• 제목/요약/키워드: Wind energy penetration

검색결과 68건 처리시간 0.027초

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.

풍력발전기 출력제한을 고려한 풍력한계용량 산정에 관한 연구 (A study on the maximum penetration limit of wind power considering output limit of WTGs)

  • 김형택;명호산;김세호
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.23-31
    • /
    • 2011
  • The wind energy is one of the most prospective resources in renewable energy. However, the WTGS shouldn't be installed indiscriminately because the power system can be negatively influenced by a variable and uncertain nature of the wind energy. It is the reason why it has to be limited to install the WTGS thoughtlessly mentioned above that support the importance of the maximum penetration limit of wind power. It may required that power system operators suggests a new way of power system operation as percentage of the WTGS increase in the existing power system. The wind power is fixed in a limited area, so using rate of the wind power will be increased by installing additional WTGS. In this paper, we have studied on economic evaluation of the wind capacity increased by restricting the output of the WTGS as the way to increase the wind capacity.

풍력발전단지의 효율적 운영을 위한 퍼지로직 기반 주파수 제어기 설계 (A Design for a Fuzzy Logic based Frequency Controller for Efficient wind Farm Operation)

  • 김세윤;김성호
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.186-192
    • /
    • 2014
  • Recently wind energy penetration into power systems has increased. Wind power, as a renewable energy source, plays a different role in the power system compared to conventional power generation units. As long as only single and small wind power units are installed in the power system, wind power does not influence power system operation and can easily be integrated. However, when wind power penetration reaches a significantly high level and conventional power production units are substituted, the impact of wind power on the power system becomes noticeable and must be handled. The connection of large wind turbines and wind farms to the grid has a large impact on grid stability. The electrical power system becomes more vulnerable to and dependent on wind energy production, and therefore there is an increased concern about the large wind turbines impact on grid stability. In this work, a new type of fuzzy logic controller for the frequency control of wind farms is proposed and its performance is verified using SimWindFarm toolbox which was developed as part of the Aeolus FP7 project.

에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안 (Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System)

  • 오웅진;이연찬;최재석;임진택
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

이중 여자 비동기 발전기를 포함한 풍력단지 시모의 해석 (Time Domain Simulation Analysis For Wind Farm with DFAG)

  • 조성구;송화창;이장호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.439-442
    • /
    • 2009
  • As a result of increasing environmental concern, the penetration of renewable power on power systems is now increasing. Wind energy can be considered as the most economical energy sources to generate electricity without depletion of fossil fuel. The penetration of wind energy from wind farm is getting larger and larger, so we need adequate control strategies for wind farm. To devise adequate control strategies for wind farm, time domain simulation analysis needs to be performed. This presents a Simultaneous Implicit-based time domain simulation algorithm for wind farm with DFAG (Doubly Fed Asynchronous generator) connected to the external power systems. This paper shows an illustrative example with a 5-bus test system.

  • PDF

풍력발전의 전력계통 동적 수용한계 산정 및 BESS 적용방안 분석 (Study on Calculation of Dynamic Penetration Limit of WTG and Applications of BESS in Power Systems)

  • Gwon, Han Na;Choi, Woo Yeong;Kook, Kyugn Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.29-32
    • /
    • 2015
  • 풍력발전기와 같은 신재생에너지원은 기존 동기화력발전기의 특성과 매우 다르기 때문에, 상정고장과 같은 가혹한 상황에서는 주파수 변동에 신속히 대응하지 못하므로 주파응답성능을 저하시킬 수 밖에 없다. 특히, 풍력발전의 수용률이 높은 상황에서 상정고장이 발생한 경우, 전력계통에 안정화를 위해서 풍력발전의 수용이 더욱 제한될 가능성이 잠재되어 있다. 이를 위해, 본 논문에서는 풍력발전의 전력계통 동적 수용한계를 산정하는 절차를 구현하고, 산출된 결과로부터 풍력발전의 동적 수용한계를 증대시키기 위한 BESS의 적용방안을 모색하였다.

대규모 풍력발전 계통 연계시 주요 송전망 제약예측시스템 개발에 관한 연구 (A Study on the Development of Critical Transmission Operating Constraint Prediction (CTOCP) System With High Wind Power Penetration)

  • 허진
    • 조명전기설비학회논문지
    • /
    • 제29권1호
    • /
    • pp.86-93
    • /
    • 2015
  • Globally, wind power development is experiencing dramatic growth and wind power penetration levels are increasing. Wind generation is highly variable in time and space and it doesn't guarantee the system reliability and secure system operation. As wind power capacity becomes a significant portion of total generation capacity, the reliability assessment for wind power are therefore needed. At present, this operational reliability assessment is focusing on a generation adequacy perspective and does not consider transmission reliability issues. In this paper, we propose the critical transmission operating constraint prediction(CTOCP) system with high wind power penetration to enhance transmission reliability.

전압형 MMC-HVDC에 의한 제주계통의 풍력한계용량 증대 방안 (A Strategy of Increasing the Wind Power Penetration Limit with VSC Type MMC-HVDC in Jeju Power System)

  • 이승민;김일환;김호민;채상헌;왓나우덩
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.550-557
    • /
    • 2015
  • The Jeju Special Self-Governing Province is currently promoting the "Carbon-free Island by 2030" policy, which requires the use of renewable energy instead of fossil fuel so that the island will have no carbon gases generated by 2030. To implement this policy, the island plans to build a wind power plant capacity of 1.09 GW in 2020; this wind power plant is currently ongoing. However, when wind power output is greater than the power demand of the island, the stability of Jeju Island power system must be prepared for it because it can be a problem. Therefore, this study proposes a voltage source-type MMC-HVDC system linked to mainland Korea to expand the wind power penetration limits of Jeju Island under the stable operation of the Jeju Island power system. To verify the effectiveness of the proposed scheme, computer simulations using the PSCAD/EMTDC program are conducted, and the results are demonstrated. The scenarios of the computer simulation consist of two cases. First, the MMC-HVDC system is operated under variable wind power in the Jeju Island power system. Second, it is operated under the predicted Jeju Island power system in 2020.

풍력 발전기의 조류해석 모델의 적용 (Application of Wind Turbine Models for Power Flow Analysis)

  • 김영곤;송화창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.211-212
    • /
    • 2008
  • As a result of environmental concerns, the production of electricity through renewable energy resources is rapidly increasing. Wind energy is among the fastest growing renewable energy resources now being integrated in the power system, and the penetration rate of wind generation has been gradually increased. For power flow analysis of the recent systems, thus, steady-state modeling of wind turbines and their application are of great importance. This paper presents the procedure we applied for implementation of a steady-state wind turbine model in power flow.

  • PDF

Real-Time Peak Shaving Algorithm Using Fuzzy Wind Power Generation Curves for Large-Scale Battery Energy Storage Systems

  • Son, Subin;Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.305-312
    • /
    • 2014
  • This paper discusses real-time peak shaving algorithms for a large-scale battery energy storage system (BESS). Although several transmission and distribution functions could be implemented for diverse purposes in BESS applications, this paper focuses on a real-time peak shaving algorithm for an energy time shift, considering wind power generation. In a high wind penetration environment, the effective load levels obtained by subtracting the wind generation from the load time series at each long-term cycle time unit are needed for efficient peak shaving. However, errors can exist in the forecast load and wind generation levels, and the real-time peak shaving operation might require a method for wind generation that includes comparatively large forecasting errors. To effectively deal with the errors of wind generation forecasting, this paper proposes a real-time peak shaving algorithm for threshold value-based peak shaving that considers fuzzy wind power generation.