• Title/Summary/Keyword: Wind energy converter

Search Result 126, Processing Time 0.024 seconds

Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a maximum output power control of stand-alone cage-type induction generator systems for wind power generation is proposed. The induction generator is operated in a vector-controlled mode, which is excited with d-axis current and of which torque is controlled with q-axis current. The generator speed is controlled by this torque, along which speed the generator produces the maximum output power. The generated power charges the battery bank for energy storage through an ac/dc PWM converter. The proposed scheme has been verified for the wind turbine simulator system which consists of M-G set.

Operating Performances of PV Energy Generation System with MPPT

  • Oh, Jin-Seok;Kim, Mark-Spatt;Lee, Yun-Hae;Jun, Sang-Tae;Yea, Seung-Hwan;Kim, Byeong-Deok;Lee, Yoon-Sik;Ji-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.479-486
    • /
    • 2003
  • This paper presents the Performance of PV(Photovoltaic) system. the design of MPPT and the battery characteristic. The output power of PV depends on the environmental factors such as insolation and cell temperature. It is proposed that the MPPT is based on an simple power control algorithm. Furthermore the converter has to maintain the optimum duty ratio. A switching strategy of converter for battery may Protect against excessive discharge and overcharge. This paper includes discussion on system reliability power quality and effects of the randomness of the wind and the solar radiation on system design.

The Harmonic Current Mitigation of DFIG under Unbalanced Grid Voltage and Non-linear Load Conditions

  • Thinh, Quach Ngoc;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.83-84
    • /
    • 2011
  • This paper presents an analysis and a novel strategy for a doubly fed induction generator (DFIG) based wind energy conversion system under unbalanced grid voltage and non-linear load conditions. A proportional-resonant (PR) current controller is applied in both grid side converter (GSC) and rotor side converter (RSC). The RSC is controlled to mitigate the stator active power and the rotor current oscillations at double supply frequency under unbalanced grid voltage while the GSC is controlled to mitigate ripples in the dc-link voltage and compensate harmonic components of the network current. Simulation results using Psim simulation program are presented for a 2 MW DFIG to confirm the effectiveness of the proposed control strategy.

  • PDF

Grid Voltage Regulation with MMC-HVDC System

  • Quach, Ngoc-Thinh;Jeong, Woo-Cheol;Yang, Hang-Jun;Choi, Jong-Yun;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.146-147
    • /
    • 2014
  • This paper presents an operation of the modular multilevel converter-high voltage direct current (MMC-HVDC) system as a Statcom to support the grid voltage. The advantage of the MMC-HVDC system is that it can control the active and reactive powers independently. The proposed control scheme will be designed by combining this performance and the control method of the Statcom. The grid voltage is regulated by the control of the reactive power, meanwhile the active power is controlled according to its applications. The simulation results based on the PSCAD/EMTDC simulation program will evaluate the effectiveness of the control scheme.

  • PDF

Power Control of a Doubly Fed Induction Machine for Wind Energy Generation without Rotational Transducers (풍력발전을 위한 회전변환기가 없는 이중여자 유도기의 전력제어)

  • 김일환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.72-78
    • /
    • 2000
  • 본 논문에서는 이중여자 유도기를 풍력발전에 적용할 때 회전자위치 센서를 사용하지 않고 발전 출력제어 방법을 제안하였다. 모델기를 풍력발전에 적용하여 운전할 때 고정자는 계통선에 연결되어 있기 때문에 고정자 자속은 일정 값을 가지며 고정자 자속의 동기 각\ulcorner고는 일정한 상수값을 가진다. 또한 회전자 전류 및 고정자 전압과 전류를 이용하여 슬립각을 추정함으로써 속도를 추정할 수 있고 뿐만 아니라 회전자 전류제어에 의해 고정자측의 발전전력을 제어할 수가 있다. 이른 토대로 속도제어 및 발전출력에 대한 결과를 나타내므로써 제안한 알로리즘의 타당성을 입증하였다.

Optimization of Residential Photovoltaic-Fuel Cell Hybrid System Using HOMER(R) (HOMER를 이용한 가정용 태양광-연료전지 하이브리드시스템의 운전 최적화)

  • Park, Se-Joon;Li, Ying;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.129-133
    • /
    • 2010
  • A hybrid system which is combined several complementary new and renewable power sources, such as photovoltaic, fuel-cell, and wind generator, etc., has been presented in various approaches. For instance, a photovoltaic cannot always generate stable output power with ever-changing weather condition, so it might be co-generated with a wind generator, diesel generator, and some other sources. In this paper, a residential PV-FC hybrid system is suggested as a distribution power source, and its operation is optimized by HOMER$^{(R)}$. As a result, it is the most economic that 5[kW] PV, 1[kW] FC, 4 batteries, 2[kW] electrolyzer, 0.5[kg] $H_2$ tank, 3[kW] converter are applied to the hybrid system.

Pure Torque Reaction System for Wind Tubine Gearbox (순수 토크 전달을 위한 풍력발전기용 증속기 반력지지 장치)

  • Lee, Jung-Hun;Park, Hyun-Yong;Shin, Young-Ho;Park, Jong-Po;Park, Jung-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.471-474
    • /
    • 2009
  • Gearbox is used to converter the power with high torque and low speed into the power with low torque and high speed. Gearbox housing should be sustained to prevent rotation of gearbox itself due to the difference between input and out torque. Uneven wind causes the reaction system to have unwanted reactive loads together with predictable pure torque. These unwanted reaction loads often cause the failure of gearbox due to bad gear mesh. In this paper, pure torque reaction system is proposed to prevent the failure of gearbox. Effectiveness and functionality of the proposed reaction system are demonstrated through the numerical analysis.

  • PDF

Development of Torque simulator for the performance analysis of the 10kW wind turbine system (10kW 풍력발전기의 동작특성 분석을 위한 토크 시뮬레이터 개발)

  • Kim, Se-Yoon;Kim, Sung-Ho;Lee, Jong-Hee;Moon, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.579-585
    • /
    • 2014
  • 10kW wind turbine is widely studied in the field of renewable energy for the merits of easy installation to the confined area such as hill, park and urban areas. The performance of various electrical devices such as converter and inverter in the wind turbine system should be systematically analyzed for various wind speeds. However, it is impossible to apply these devices directly to practical wind turbine system for the safety of wind turbine system. Therefore, it is required to develop torque simulator which can generate corresponding torque according to its wind speed. In this work, 10kW torque simulator which consists of three phase torque control inverter, 3 phase induction motor and PMSG(Permanent Magnet Synchronous Generator) is developed.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Test results of an inverter system for 750kW gearless wind turbine (750kW gearless 풍력발전기 인버터 시험)

  • Son, Yoon-Gyu;Suh, Jae-Hak;Kwon, Sei-Jin;Jang-Seung-Duck;Oh, Jong-Seok;Hwang-Jin-Su;Kang, Sin-Il;Park, Ga-Woo;Kwon, O-Jung;Chung-Chin-Hwa;Han-Kyung-Seop;Chun-Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.59-63
    • /
    • 2005
  • The 800-kW PM (permanent magnet) synchronous generator is developed as a wind power generator. The matching converter is designed to control the torque and power depending on the wind speed regime. The generator starts to generate the power at the speed of 9 rpm and the rated output is generated at the speed of 25 rpm. The rated output power of an inverter is 750 kW when the PM synchronous generator is delivering 800 kW to the inverter. The inverter is specially designed to perform the maximum power point tracking (MPPT) at the low wind speed regime that is typical wind environment in Korea. The inverter test was done with a 2 MW M-G system at KERI (Korea Electric Research Institute). The M-G set has a 2 MW motor driver and a 38:1 gear to match the speed between the motor and the PM generator. The torque simulating the wind is applied to the PM generator by a DC motor. The test results show the inverter efficiency of $94.3\%$ at the rated power generating condition. The measured values show that the MPPT algorithm is working well. Overall reliability will be verified through the long-term site test.

  • PDF