• Title/Summary/Keyword: Wind driven current

Search Result 93, Processing Time 0.028 seconds

Dynamically Induced Anomalies of the Japan/East Sea Surface Temperature

  • Trusenkova, Olga;Lobanov, Vyacheslav;Kaplunenko, Dmitry
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.11-29
    • /
    • 2009
  • Variability of sea surface temperature (SST) in the Japan/East Sea (JES) was studied using complex empirical orthogonal function (CEOF) analysis. Two daily data sets were analyzed: (1) New Generation 0.05o-gridded SST from Tohoku University, Japan (July 2002-July 2006), and (2) 0.25o-gridded SST from the Japan Meteorological Agency (October 1993-November 2006). Linkages with wind stress curl were revealed using 6-h 1o-gridded surface zonal and meridional winds from ancillary data of the Sea- WiFS Project, a special National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) product (1998-2005). SST anomalies (SSTA) were obtained by removing the seasonal signal, estimated as the leading mode of the CEOF decomposition of the original SST. Leading CEOF modes of residual SSTA obtained from both data sets were consistent with each other and were characterized by annual, semiannual, and quasi-biennial time scales estimated with 95% statistical significance. The Semiannual Mode lagged 2 months behind the increased occurrence of the anticyclonic (AC) wind stress curl over the JES. Links to dynamic processes were investigated by numerical simulations using an oceanic model. The suggested dynamic forcings of SSTA are the inflow of subtropical water into the JES through the Korea Strait, divergence in the surface layer induced by Ekman suction, meridional shifts of the Subarctic Front in the western JES, AC eddy formation, and wind-driven strengthening/weakening of large-scale currents. Events of west-east SSTA movement were identified in July-September. The SSTA moved from the northeastern JES towards the continental coast along the path of the westward branch of the Tsushima Current at a speed consistent with the advective scale.

ON TRANSPORTS DRIVEN BY TIME-VARYING WINDS IN HORIZONTALLY UNBOUNDED SHALLOW SEAS (시간변화적 바람에 따른 넓은 천해에서의 해수유랑)

  • Kang, Yong Q.
    • 한국해양학회지
    • /
    • v.17 no.2
    • /
    • pp.41-50
    • /
    • 1982
  • We present theoretical models for the unstedy transports driven by the time-varying wind stress in horizontally unbounded shallow seas of an uniform depth. We derive linearized transport equations that inchude the acceleration, the Coriolis firce, the wind stress and the bottom friction. The steady transport in a shallow sea is different from the classical Ekman transport because of a presence of non-negligible bottom fricttttion. The transient reansport and an inertial oscillation of which frequency of rotation is the same as the frequency of the wind stress forcing. The transprt associated with a wind stress of which direction changes linearlywith time is decribed by a superpoeition so a free inertial oscillation with a pweiod of one inertial day, The theoretical models of the transports are useful in understanding the time-varying currents and the transports of nutrients in shallow seas.

  • PDF

Constraining the Mass Loss Geometry of Beta Lyrae

  • Lomax, Jamie R.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.47-49
    • /
    • 2012
  • Massive binary stars lose mass by two mechanisms: jet-driven mass loss during periods of active mass transfer and by wind-driven mass loss. Beta Lyrae is an eclipsing, semi-detached binary whose state of active mass transfer provides a unique opportunity to study how the evolution of binary systems is affected by jet-driven mass loss. Roche lobe overflow from the primary star feeds the thick accretion disk which almost completely obscures the mass-gaining star. A hot spot predicted to be on the edge of the accretion disk may be the source of beta Lyrae's bipolar outflows. I present results from spectropolarimetric data taken with the University of Wisconsin's Half-Wave Spectropolarimeter and the Flower and Cook Observatory's photoelastic modulating polarimeter instrument which have implications for our current understanding of the system's disk geometry. Using broadband polarimetric analysis, I derive new information about the structure of the disk and the presence and location of a hot spot. These results place constraints on the geometrical distribution of material in beta Lyrae and can help quantify the amount of mass lost from massive interacting binary systems during phases of mass transfer and jet-driven mass loss.

A Numerical Simulation of Residual Current and Material Transportation in Hiroshima Bay, Japan (황도만에서의 잔차류와 물질소송의 수치모형실험)

  • 이인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • In order to clarify the seasonal variation of the residual current and the material transportation process in Hiroshima Bay, JAPAN, the real-time simulation of residual current and particle tracking by using the Euler-Lagrange model were carried out. The calculated tidal current, water temperature, and salinity showed good agreement with the observed ones. The residual currents showed a southward flow pattern at the upper layer, and a northward flow pattern at the lower layer. The flow structure of the residual current in Hiroshima Bay is an estuarine circulation affected by density flow and wind driven current. The residual current plays an important role of material transportation in the bay.

  • PDF

광도만에 있어서 물질수송과정의 수치예측

  • 이인철;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.159-164
    • /
    • 2000
  • In order to clarify the seasonal variation of residual current and material transportation process in Hiroshima Bay, JAPAN, the real-time simulation of residual current and particle tracking by using Euler-Lagrange model were carried out. The calculated tidal current and water temperature and salinity showed good agreement with the observed ones. The residual currents showed the southward flow pattern at the upper layer, and the northward flow pattern at the lower layer. The flow structure of residual current in Hiroshima Bay is an estuarine circulation affected by density flow and wind driven current. The residual current plays an improtant role of material transportation in th bay.

  • PDF

A Simple Model for Separation of East Korean Warm Current and Formation of North Korean Cold Current (동한난류의 이안 및 북한한류의 형성에 관한 단순모델)

  • SEUNG, YOUNG HO
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.189-196
    • /
    • 1992
  • A simple quasi-geostrophic model is considered to explain the separation of the East Korean Warm Current(EKWC) and formation of the North Korean Cold Current(NKCC). In this model, the circulation is driven by inflow-outflow condition and modified by local forcing. The solution is decomposed into inflow-outflow and local modes which describe only the effects of inflow-outflow condition and local forcing, respectively. Results of analyses show that both the surface cooling and positive wind stress curl are favorable for the separation of EKWC and formation of NKCC. This fact is compatible with the present knowledge about heat flux and wind stress field over the Sea of Japan.

  • PDF

Tracking Experimentation of Floating Debris Drained From Nak-Dong River (낙동강 유입 부유폐기물 해상이동경로 추적시험)

  • Yu J. S.;Lee M. J.;Rho J. H.;Yoon S. H.;Kim M. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.3-9
    • /
    • 2002
  • When a flooding a lot of debris are drained from rivet. Drained debris separated lodgement debris and floating debris, and floating debris moving other region by wind and ocean current. This experimentation throw three buoys which installed with DGPS and other devices in nak-dong river, and check there location every minute. In consequence of this experimentation, floating debris drained nak-dong river are gathered near Dadaepo seaside or drifted Dong hae. Ocean current and wind driven current are largely influenced then tide. Numerical analysis calculated by MAPCNTR(develop by KRISO) is similar to the result of this experimentation.

  • PDF

Three Dimensional Computer Modeling of Magnetospheric Substorm

  • Min, Kyoung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1989
  • Magnetospheic substorm in the magnetotail region is studied numerically by means of a three dimensional MHD code. The analytic solution for the quiet magnetotail is employed as an initial configuration. The localized solar wind is modeled to enter the simulation domain through the boundaries located in the magnetotail lobe region. As a result of the interaction between the solar wind and the magnetosphere, the magnetic field lines are stretched, and the plasma sheet becomes thinner and thinner. When the current driven resistivity is generated, magnetic reconnection is triggered by this resistivity. The resulting plasma jetting is found to be super-magnetosonic. Although the plasmoid formation and its tailward motion is not quite clear as in the two dimensional simulation, which is mainly because of the numerical model chosen for the present simulation, the rarification of the plasmas near the x-point is observed. Field aligned currents are observed in the late expansive stage of the magnetospheric substorm. These field aligned currents flow from the tail toward the ionosphere on the dawn side from the ionosphere to ward the tail on the dusk side, namely in the same sense of the region 1 current. As the field aligned currents develop, it is found that the cross tail current in the earth side midnight section of the magnetic x-point is reduced.

  • PDF

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

A Buoy Drifting Simulation in the Korea Strait (대한해협의 부표표류 시뮬레이션)

  • 최병호;김경환;김영규;방인권
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.379-392
    • /
    • 1995
  • An initial attempt to establish predictive system of sea surface current and trajectories of drifting bodies for seas adjacent to Korea is described. A predictive system for the Korea Strait area was first set up based on Data Tables for surface tidal currents, surface wind-driven currents and density-driven currents. Simulations thus performed were in general agreements with satellite tracking buoy observations available in this region.

  • PDF