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ABSTRACT

We present theoretical models for the unsteady transports driven by the time-varying wind
stress in horizontally unbounded shallow seas of an uniform depth. We derive linearized transport
equations that include the acceleration, the Coriolis force, the wind stress and the bottom friction.
The steady transport in a shallow sea is different from the classical Ekman transport because of
a presence of non-negligible bottom friction. The transient transport in a shallow
Ekman

oscillation of which magnitude decreases with time. A sinusoidal wind stress

sea after an
onset of a wind stress is decribed by a superposition of the transport and an inertial
generates a tran-
sport ellipse of which frequency of rotation is the same as the frequency of the wind-stress
forcing. The transport associated with a wind stress of which direction changes linearly with

time is decribed by a superposition of a free inertial oscillation with a period of one inertial day

and a forced oscillation of which period is the same as the rotation period of the wind
The theoretical models of the transports are useful in understanding the

and the transports of nutrients in shallow seas.

1. INTRODUCTION

In the classical Ekman theory of wind-driven
currents one usually assumes a steady state
balance between the wind stress and the Cor-
iolis force. An analytic solution for the steady
Ekman problem can be easily obtained in a
homogenous ocean of an infinite depth with a
simplifying assumption that the austausch
coefficient or the eddy viscosity is constant (see
128~134).
The unsteady Ekman problem after an onset

for example, von Schwind, 1980,

of a steady and uniform wind stress was
investigated by Ekman(1905) for an infinitely
deep ocean and by Hidaka(1933) for the case
of a finite depth (see Krauss, 1973, 249~253).

In the shallow seas, such as the Yellow Sea
or the East China Sea, the depths of the sea
of 100m or less are only of the same order

stress.

time-varying currents

or shallower than the Ekman depth, and there-
fore one needs to consider the bottom fric-
tion as well as the wind stress. Most previ-
ous studies on the wind-driven currents in
shallow seas, except numerical models (e.g.,
Choi, 1982), do not include the effect of bot-
tom friction. In theoretical studies on the
Ekman transport in a shallow sea one usually
assumes a constant austausch coefficient and
applies a no-slip condition at the bottom{e.g.,
Krauss, 1973, 245f). However, both of these
assumptions are quite remote from the reality.

In this paper we present theoretical models
of the transports in horizontally unbounded
shallow seas driven by various types of time-
varying wind stress forcing. After we derive
governing equations for the transports(Section
2) we obtain a steady solution in Section 3.
Then we present the solution for the transient
state transport after an onset of a steady
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and uniform wind stress (Section 4). In Sec-
ticns 5 and 6 we study transports associated
with the wind stress of which magnitude or
direction changes with time. The applicability
and limitations of the theoretical models are
discussed in Section 7. The mathematical
symbols used in this paper are summerized in

the Appendix.

2. GOVERNING EQUATIONS

The horizontal momentum equations for a
homogeneous ocean in an f-plane are (cf. von
Schwind, 1980, 149)
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where u, v and w are velocities in the x(east-
ward), y(northward) and z(upward) direction,
respectively, f=2Qsing the Coriolis para-
meter, @ the angular velocity of the earth’s
rotation, ¢ the latitude, p the density of a
homogeneous sea water, and A, and A, are
horizontal and vertical austausch coefficients,
respectively.

For a mathematical simplicity we assume
the followings:
1) The ocean is horizontally unbounded.
2) There is no horizontal pressure gradients,

o _ 0
ax oy

3) There is no lateral variation in the velocity

ie., =0.

field, i.e., Fu=Pv=0, where V:(i, A .
ox oy

4) The vertical velocity is negligibly small,
ie.,, w=0.
With these simplifying assumptions, (2.1)
becomes
o5 = (45
(2.2)

()= (a2)

We integrate (2.2) from the bottom(z=—H)
to the free surface (z=0) and get
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ov
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(2.3)
where V=(U, V) is the horizontal mass trans-

(o)

port vector, i.e.,
0 (1]
U(t):pg u(z,Ddz, V(t):pg vz, Ddz.
2.8
The surface and bottom boundary conditions

are, from the continuity of the stresses,

ov
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(a5) =B (4ar) =5
(2.5)
where T=(T7,, T,) is the wind stress vector
at the sea surface and B=(B,, B,) is the str-
ess due to bottom friction. The wind stress T
can be computed by

T:pa dlw‘ws (2‘ 6)

the air, C, is a
and W is the

wind stress vector. The bottom stress B can

where p, is the density of
dimensionless drag coefficient,
be parameterized as a linear function of
horizontal mass transport V by (cf. von Sch-
wind, 1980, 194)

B=—rV, 2.7

where 7 is a friction coefficient in units of
sec™l,

By using (2.5) and (2.7) into (2.3) we get
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a set of equations for the transport in a

shallow sea:

U fv=1.—1U
oV (2.8)
*EF—'rfU:T,—rV.
The equations (2.8) will be the basis of our
investigations in the subsquent

(2.8) are different

theoretical

sections. The equations

from the governing equations of the classical

Ekman theory in the following aspects:

1) Unknowns are expressed in terms of trans-
ports instead of a velocity field

2) Equations (2.8) do not include any austa-
usch coefficient.

3) The bottom stress is explicitly included.

4) Temporal changes of the transport are

explicitly included.

3. TRANSPGRTS IN A STEADY
STATE

Let’s suppose that a uniform wind has
blown for a sufficiently long time and a steady
state is maintained. Then (2.8) becomes

—fV=T,—2U

3.1

fU=T,—rV, (-1
and the solution of these equations is

U:ML_ V:II’:fI:_ 3.2)

r2+f‘2 ’ r'l+f2
The dot product of the wind stress vector
T=(T7., T,) and the transport vector V=,

V) yields
,

r4f

T.V=

73 (T12+ T2 = 1,2_:;](2“‘\’1\‘2'
(3.3)

This shows that the wind stress and the trans-
port are not orthogonal to each other, exc-
ept for a special case of a vanishing bottom
friction (r=0). In other words, due to an
existence of the bottom friction, the mass

transport is not to the right 90° of the wind

stress in the northern hemisphere.
When the wind is blowing northward (T.=
0, T,>>0) the transport is decribed by
v=-1Tm, V=i
Fig. 1 shows the steady transport described
by (3.4). This figure shows that the Ekman

transport in a shallow sea associated with a

(3.4)

northward wind is not eastward, but it lies
between northward and eastward. The devia-
tion from the classical Ekman transport is
given by tan~'(z/f). The magnitude of trans-
port is
Iy — Ty 7,
VUV TRl

From this we see that

(3.5)

the bottom friction
reduces the magnitude of transport by a factor
of (1 L—r’/fz)—%. As an example, let’s assume
that r=f/4. In this case the bottom friction
reduces the magnitude of the transport by a
factor of 0.97, and it rotates the direction of

transport 14° northward from the eastward.

Fig. 1. Steady state transport in a shallow sea
driven by a uniform northward wind stress.

4. TRANSIENT TRANSPORT
AFTER AN ONSET OF
A STEADY WIND

In the previous section we considered a
steady state solution. In this section we con-
sider the mass transport in a transient state
after an onset of a steady and uniform wind

stress. We assume that a constant wind stress
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is applied from a certain time, say, ¢=0.
That is,

T=0, t<0

T =constant, t=0 @D

The transient transport is described by a sol-

ution of (2.8) with initial conditions
U=V=0 at t=0. (4.2)
We introduce the complex-valued transport

V* and the complex-valued wind stress T*

defined by
Ve=U-LiV w3
T*=T,2-iT,, 3

where i is a unit imaginary number. An intro-
duction of these complex-valued quantities is
very useful, because we can combine two
equations in (2.8) into a single equation in a
complex-plane. By multiplying a unit imagin-
ary number { to the second equation of (2.8)
and by adding this to the first equation of
(2.8) we get

oVv*
57 (4.4)
The solution of this equation with an initial
condition V*(0)=0 is

T*

Fif Vo VE=TX,

V*='i—f_?’,—*(l‘—€_"e’m)- (4.5)
That is,
. T.+iT,)(r—i
U+‘IV= ( }2—:*1—)’(27 Lf) x
[(1—e " cosft)+ie *sinft].  (4.6)

The x and y components of the mass trans-
port can be found simply by equating the real
and the imaginary parts of this equation.
When the wind blows northward (T.=0, T,
>(), the transient transport is given by
O f,T, [f(1— e~ cosft) —re-sinft]
[fetsinft-+r(1—e tcosfi)].
4.7

The transport vector (4.7) describes a spiral.

VO =i

The period of the “damped oscillation” of the

transport is one inertial day, 12hr/sing. As

the time increases the magnitude of the oscil-
latory component of the transport decreases
exponentially with time, and the rate of the
decrease depends on the friction coefficient 7.
After a sufficiently long time (4.7) becomes
identical to the steady solution (3.4), ie.,
L i
(4.8)

Fig. 2 shows the temporal evolution of the
vertically-averaged velocity, after an onset of
a constant wind stress, obtained by dividing
the transport of (4.7) by gH. Numeral values

used in this figure are: T,=1 dyne/cm?
F(35°N) =8. 110 %sec™’, r=0.25f, and H=
5% 10°%cm.

The trajectory X(f) of a water particle

averaged over the water column is

(t):H—~§ U()dt
— 1 T’ ri— I_ -Tt oy i
el e
A
,".'A.;,fZ e "t cosft 7S ] (4.9)
Y(t)= E V(t)dt
1 T rz_‘ 2 -
=2H 7. [rt rz_lr‘;:z e "tcosft
- ez~ B3
1' /// I
- e
0 .
1 - ‘ \
‘ AN s
/ (&
co e - \2\\:0{;7ZA3 — - lermisec)
Fig. 2. Vertically-averaged transient  velocity (cm

/sec) of water particles in a shallow sea of
50m after an onset of a uniform northward
wind stress of 1 dyne/cm®. The numbers
show the time in units of inertial days after
an onset of the wind stress. The Coriolis
parameter is evaluated at 35°N, and the
friction coefficient r=jf/4.
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If we put X'=

pH (72 'f'l)'l ‘and Y =

Ty _2=f then f i
H rrfnz then rom(4.9) we can easily

obtain an equation:

f 7,
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_2,-'( T 2
= 2,
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This equation shows that the trajectory of the
water particle is decribed by a superposition

(4.10)

of a translational motion with a veloeity(?%

Lo T ) and a circular motion
72T{Lf2 ’ pH ,;2’;}:2'
with a radius of e"‘(Tle ;2{_}2) The pe-

riod of the circular motion is one inertial day,
12hr/sing. After a sufficiently long time the
circular motion is diminished and the trajecto-
ry becomes a straight line. Fig. 3 shows the
trajectory calculated by (4.9) using the values
the same as in Fig. 2.

It is interesting to consider the transport for
the case of a vanishing friction damping, i.e.,
#=0. In this case (4.7) becomes

Uy= 7}’ (1—cosft)
(4.11)
V)=

T,
f

- —eY(tm)

Fig. 3. The trajectory(km) of a water particle,
averaged vertically in a shallow sea of 50m,
after an onset of a uniform northward wind
stress of ldyne/cm?. The numbers show the
time in inertial days after an onset of the
wind stress forcing. The Coriolis parameter
is evaluated at 35°N, and the friction coeffi-
cient r=f/4.

45

The transport vector of (4.11) describes a

(T,/f,0) in the (U, V)-
plane with a radius of T,/f. The time average

of the transport over an inertial day

circle centered at

is the
same as the classical Ekman transport, nam-
ely, an eastward transport of 7,/f. The traj-
ectory X(#) of a water particle averaged ver-
tically over the water column for the case

of r=0 is a cycloid described by

X(t)~-—- S HTf ( —};sinﬂ)

Y= ?ﬁ—nV(t)dt :’Frj‘"f (1—cosfd).

(4.12)

5. TRANSPORT ASSOCIATED
WITH A SINUSOIDAL WIND
STRESS

So far we have comsidered the steady and
transient transports associated with a constant
wind stress. The direction and magnitude of
the wind stress in the ocean vary randomly
with time. The random wind stress can bhe
decomposed into the time-averaged mean field
and the fluctuations. The transports associated
with the mean field were already discussed in
Sections 3 and 4. The fluctuation part of the
x and y components of the wind stress can be
represented by the Fourier series expansion.
In this section we will investigate the trans-
ports associated with a single Fourier compo-
nent of the wind stress which changes its mag-
nitude but does not change its direction.
The transport associated with a wind stress
of which direction varies linearly with time
will be discussed in Section 6.

For a mathematical simplicity we assume a
r=0). We
consider a transport associated with a sinusoi-

vanishing bottom friction (i.e.,

dally varying wind stress in the meridional
direction, that is,
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T.@®)=0, Ty(®)=T,cosat, (5.1)
vhere T, is the amplitude of the meridional
vind stress and « is the associated frequency.
n this case (2.8) becomes

aU

S—fV=0
- B (5.2)
~——+fU=T,cosut,
ot
ind yields a solution
U= fif_T’ - coswt,
V()=— f.f)_T’l sinwt. (5.3)

The temporal characteristics of the transport
‘an be seen more clearly by representing (5. 3)

i8S

U*(t) ! Vo ). (5.4)
(72@}) (f?fc’v’)

This equation shows that the transport vector,
issociated with a sinusoidal wind-stress for-
‘ing, describes a “transport ellipse”, the fre-
juency of which is the same as that of the
‘orcing. When the frequency of the meridional

when
than

wind stress is smaller than f, that is,
the period of the wind stress is larger
an inertial day, the major axis of the trans-
port ellipse is orthogonal to the direction of
the wind. In other words, if w<<f, then the
oceanic transport associated with a sinusoidally
varying meridional wind stress is almost zonal,
and if «>>f, then the oceanic transport is
almost meridional. When the period of the
wind stress forcing is equal to one inertial
day (i.e., w=f), the oceanic transport in an
ocean without friction, described by (5.3) or
(5.4), will be infinitely large.

From (5.3) we see that the transport, ass-
ociated with a sinusoidal wind stress, averaged
over one cycle of the forcing is zero. The
sense of rotation of the transport ellipse is
clockwise for the case of w<f and is anticlo-
ckwise for w>f in the northern hemisphere.
Fig. 4 shows the temporal evolution of the
wind stress (5.1) and the associated vertically
averaged velocity, which is obtained by mulit-

iplying 1/pH to the transport (5.3). Numeral

-1

SV o[- P
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e | @ \j\\\ @ é@ @ /,/t’ @
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'

Pig. 4. The upper figure: the meridional sinusoidal wind stress with an amplitude of 1 dyne/cm? and a period
of 5 inertial days. The lower figure: the horizontal velocity(cm/sec) averaged vertically in a shallow
sea of 50m. The numbers inside of circles in dicate the time in units of inertial days. The Coriolis
parameter is evaluated at 35°N, and the bottom friction is neglected.
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values used in Fig .4 are: T,=1dyne/cm? (the
magnitude of wind speed is about 7m/s), f
(35°N)=8.4x 10 %sec™! (inertial period of 21
hours), w=1.45X10"%sec~'(forcing period of 5
days), and H=50m.

6. TRANSPORT ASSOCIATED
WITH A ROTATING WIND
STRESS

In this section we investigate the transport
associated with a wind stress of which direc-
tion varies linearly with time. We assume
that a wind stress of a constant magnitude

rotates with a constant angular velocity and

the bottom friction is negligible. With these
simplifying assumptions, (2.8) becomes
AU v=Teosot
oV (6.1)

T—.LfU:Tsinﬁt,

where T is the magnitude of the wind stress
and @ is a constant angular velocity of the
rotation of the wind stress. (6.1) can be writ-
ten in terms of the complex-valued transport,
V¥=U+iV, as

oV*
ot

and this has a solution

(6.2)

+ifVe=Tet*,

V(D) =ae-*f'-7%e*"

=d(cosft—isinft)+

6.3)

where @ is an arbitrary constant associated
with the homogeneous solution of (6.2). The

71‘-_0‘( sinft—icosét),

real and imaginary parts of (6.3) yield the
desired solution of (6.1):

uw =&cosft+?1—0 sin 6t

7 (6-4)

o . T
V(f)=—isin ft—7+—¢9 cosft.

The solution (6.4) shows that the transport

consists of a free inertial oscillation with an
undetermined amplitude @ and a forced oscilla-
tion with an amplitude of T/(f+0). Note
that the free inertial oscillation does not re-
quire any external forcing, and therefore the
amplitude Z is undetermined. The forced os-
cillation rotates with an angular velocity &
which is the same as that of the wind stress
forcing. For a special case of =0, that is,
when there is no free inertial oscillation, we
can easily show that the transport vector is
always to the right 90° of the wind stress
vector.

It is instructive to plot the temporal evolu-
tion of the transport described by (6.4). The
vertically-averaged velocity can be obtained
by multiplying 1/pH to the transport of (6.4).
If, as an example, we take numeral values
of f=8.4X107° sec™!, 6=0.5f (rotation period
of the wind stress is two inertial days), T-=
1 dyne/cm?, @=T/(f+6) (amplitudes of the
free and the forced oscillations are the same),

and H=50m, then the vertically averaged
velocity (#,7) becomes

_ a .

u(@)= oH (cosft+ sin6t)

=1. 6(cosft+ sinft) (cm/sec)

a

() =— o0 (sinft+ cos6t)

= —1.6(sinft+ cosét) (cm/sec). (6.5)
Fig. 5 shows the temporal evolution of velo-
city computed by (6.5). Note that the three-
leaved rose curve of the velocity shown in
Fig. 5 is not necessarily a general curve of
(6.4) but is only one specific example of the
velocity computed by (6.5).

7. DISCUSSION AND CONCLUSIONS

The theoretical studies in this paper provide -
us insights on the qualitative features of the
transports in & shallow sea driven by time-
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Fig. 5. Temporal evolution of the velocity(cm/sec),
vertically averaged in a shallow sea of 50m,
driven by a rotating wind stress with a mag-
nitude of 1dyne/cm? and a rotation period
of two inertial days. The amplitude of the
free inertial oscillation and that of the forced
oscillation are assumed to be the same. The
numbers indicate the time in units of inertial
days. The Coriolis parameter is evaluated at
35°N, and the bottom friction is neglected.

varying wind stress forcing. In particular, we
have shown the influences of the bottom fric-
It is
poteworthy that our transport model does not

tion on the transports in a shallow sea.

include any austausch coefficient. This implies
that the anpalytic models of transports for
various types of wind-stress forcing do not
depend on the vertical distribution of the aus-
tausch coefficient.

We should, however, be aware of the lim-
jtations of the theoretical results of this paper.
We assumed that the sea is horizontally un-
ounded and homogeneous and the wind stress
is horizontally uniform. We further assumed
that the velocity field is horizontally homoge-
neous. These assumptions require the depth of
the sea to be constant. Hence the transport
models discussed in this paper should work
only in shallow seas of a uniform depth lo-
cated far away from the coastlines. Our trans-
part models can give us quantitative values

of transport, but they do not provide us any

information on the vertical distribution of the
velocity field.

The theoretical results of this paper can be
useful in understanding the horizontal trans-
ports of water masses and nutrients associ-
ted with time-varying wind stress in a shallow
in this

paper was concentrated to the transports in a

sea. Also, although our main concern

shallow sea, the theoretical results of this
paper can, in principle,be applied to the time-
varying transports in the surface Ekman layer
of the open ocean provided the friction coeffi-
cient is adjusted accordingly.
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APPENDIX: NOTATIONS

Mathematical symbols used in this paper are sum-
merized below with their c.g.s. units in the paren-
thesis.

a Amplitude of the transport associated with a free
inertial oscillation (gm cm™! sec™!)

A,, A, Horizontal and vertical austausch coefficients

or eddy viscosity(gm cm™! sec™?)

B=(B., B,) Bottom friction stress(gm cm-! sec”?)

C, Drag coefficient (Cy=1.2X107%)

f=20sinp Coriolis parameter(sec)

H Depth of the sea(cm)

i=,/—1 A unit imaginary number (dimensionless)

p Pressure(gm cm~! sec?, or dyne cm-?%)

¢ Coeflicient of bottom friction(sec?)

T=(T., Ty) Wind stress vector(gm cm-'sec™?, or

dyne c¢m™%)

T Amplitude of the time-varying wind stress(gm cm™!
sec™?)

T*=T,+iT, Complex-valued wind stress(gm cm-!

sec™?)
u,v,w Velocity components of water particles in
the x,y and =z directions, respectively(cm
sec™!)
V= (U, V) Horizontal mass transport vector(gm cm-!
sec™?)
V*=U+iV Complex-valued horizontal mass trans-
port(gm cm-} sec?)

W Wind velocity(cm sec?)

x,¥,2z Local cartesian coordinate; x=eastward, y=
northward, and z=upward (cm)

X=(X,Y) Trajectory of water particles (cm)

6 Angular velocity of a rotating wind stress (sec™!)

p Density of the sea water(p=1 gm cm=3)

ps Density of the air(p.=1.225X10"* gm cm™3)

¢ Latitude(degrees)

Q Angular velocity of the earth’s rotation(Q2=7.27
X 10-5sec™1)

o Angular frequency of a sinusoidal

(sec™t)

wind stress
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