• Title/Summary/Keyword: Wind Vibration

Search Result 996, Processing Time 0.027 seconds

Cooperative Spectrum Sensing for Cognitive Radio Systems with Energy Harvesting Capability (에너지 수집 기능이 있는 인지 무선 시스템의 협력 스펙트럼 센싱 기법)

  • Park, Sung-Soo;Lee, Seok-Won;Bang, Keuk-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.8-13
    • /
    • 2012
  • In this paper, we investigate cooperative spectrum sensing scheme for sensor network-aided cognitive radio systems with energy harvesting capability. In the proposed model, each sensor node harvests ambient energy from environment such as solar, wind, mechanical vibration, or thermoelectric effect. We propose adaptive cooperative spectrum sensing scheme in which each sensor node adaptively carries out energy detection depending on the residual energy in its energy storage and then conveys the sensing result to the fusion center. From simulation results, we show that the proposed scheme minimizes the false alarm probability for given target detection probability by adjusting the number of samples for energy detector.

Combination resonances in forced vibration of spar-type floating substructure with nonlinear coupled system in heave and pitch motion

  • Choi, Eung-Young;Jeong, Weui-Bong;Cho, Jin-Rae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.252-261
    • /
    • 2016
  • A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ${\omega}{\pm}{\omega}_5$ and $2{\omega}_{n5}$ between the excitation frequency (${\omega}$) of a regular wave and the natural frequency of the pitching motion (${\omega}_{n5}$) of the floating substructure.

Passive Control of the Condensation Shock Wave Oscillation in a Supersonic Nozzle (초음속 노즐에서 발생하는 응축충격파 진동의 피동제어)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.951-958
    • /
    • 2002
  • Rapid expansion of a moist air or a stream through a supersonic nozzle often leads to non-equilibrium condensation shock wave, causing a considerable energy loss in flow field. Depending on amount of latent heat released due to non-equilibrium condensation, the flow is highly unstable or a periodical oscillation accompanying the condensation shock wave in the nozzle. The unsteadiness of the condensation shock wave is always associated with several kinds of instabilities as well as noise and vibration of flow devices. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for the purpose of alleviation of the condensation shock oscillations in a transonic nozzle. A droplet growth equation is coupled with two-dimensional Navier-Stokes equation system. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft wind tunnel is made to validate the present computational results. The results show that the oscillations of the condensation shock wave are completely suppressed by the current passive control method.

A Study on Energy Harvesting Technique using Piezoelectric Element (압전소자를 이용한 에너지 수확에 관한 연구)

  • Yun, S.N.;Kim, D.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2009
  • This paper presents the energy harvesting technique which is carried out by vibration system with a piezoelectric element. In this study, low frequency characteristics of the piezoelectric element bonded to the aluminum cantilever were experimentally investigated. The piezoelectric element of size of $45L{\times}11W{\times}0.6H$ and piezoelectric constant($d_{31}$ ) of $-180{\times}10^{-12}C/N$ was used. The material of cantilever is an aluminum and two kinds of cantilever of which dimensions are (150, 190)$[mm]{\times}13[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the magnetic type vibrator and the vibrator was operated by power input with a sine wave. The characteristics of requency and mass variation of cantilever end part such as 0, 2.22, 4.34, 5.87, 8.66, 11.01 [g] were investigated. Finally, this paper suggests a method of generating electrical energy with a piezoelectric element using wind, an energy source that is easily applied and from which we can obtain "clean" energy.

  • PDF

Weed Control by Flame (화염을 이용한 잡초방제 연구)

  • 姜和錫;文學洙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.331-336
    • /
    • 2001
  • This study was to develop a kerosene flame weeder. An air compressor was driven though the PTO of a tractor to provide necessary air for fuel combustion and proper pressure to supply fuel from fuel tank to the nozzle. It was found that the flame was extinguished very easily by wind and vibration of the tractor. This trouble could be solved by attaching a burner cap, which is a modified venturi tube, at the end of the nozzle. The constructed flame weeder was tested for the weeding capability in the prepared field. Weed extinction rate and weight decrease rate were analysed. Measured maximum flame temperature was 1,121$\^{C}$ when the fuel consumption was 13.41 kg/h and fuel supply pressure was 88.2 kPa. The maximum temperature occurred at 20cm from the front end the burner, and it decreased to 46$\^{C}$ as the distance increased to 110cm. The flame length of up to 70cm, where the flame temperature was higher than 372$\^{C}$, would be used for weeding purpose. Weed extinction rate and weight decreasing rate increased as the fuel consumption increased. The flame weeder was evaluated to be a practical weeder through improvement as the weed extinction rate and weight decrease rate were analysed to be 75% and 85%, respectively when the fuel consumption was 116.87kg/ha.

  • PDF

Field Measurements of the New CCTV Tower in Beijing

  • Xu, Y.L.;Zhan, S.;Xia, H.;Xia, Y.;Zhang, N.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.171-178
    • /
    • 2013
  • The emergence of a growing number of tall buildings, often with unusual shapes and innovative structural systems, has led to the realization of the need for and the importance of field measurements. The new China Central Television (CCTV) Tower in Beijing is one of tall buildings with a highly unusual shape and a complex structural system, requiring field measurements to identify its dynamic characteristics for the subsequent dynamic analysis of the tower under wind excitation, seismic-induced ground motion and traffic-induced ground motion. The structural system and the finite element model of the CCTV Tower are first introduced in this paper. The computed natural frequencies and mode shapes are then presented as a reference for the field measurement. After introducing the arrangement of the ambient vibration measurement, the field measured natural frequencies and damping ratios of the CCTV Tower are presented and the measured natural frequencies are finally compared with the computed ones. It was found that the structural damping ratios of the CCTV Tower are small and the computed natural frequencies are smaller than the measured ones by about 12~17%.

Comparison between Field Test and Numerical Analysis for a Jacket Platform in Bohai Bay, China

  • Yang He-Zhen;Park Han-Il;Choi Kyung-Sik;Li Hua-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.1-7
    • /
    • 2006
  • This paper, presents a comparison between numerical analysis and field test on a real offshore platform in Bohai Bay, China. This platform is a steel jacket offshore platform with vertical piles. The field testing under wave-induced force and wind force etc. was conducted, in order to obtain the dynamic parameters of the structure, including the frequencies of the jacket platform, as well as the corresponding damping ratios and mode shapes. The natural excitation technology (NexT) combined with eigensystem realization algorithm (ERA) and the peak picking (PP) method in frequency domain are carried out for modal parameter indentification under operational conditions. The three-dimeansional finite element model (FEM) is constructed by ANSYS and analytical modal analysis is performed to generate modal parameters. The analytical results were compared with experimental results. A good agreement was achieved between the finite element and analysis and field test results. It is further demonstrated that the numerical and experimental modal analysis provide a comprehensive study on the dynamic properties of the jacket platform. According to the analysis results, the modal parameters identification under ambient excitation can calibrate finite element model of the jacket platform structures, or can be used for the structural health monitoring system.

3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System (지반-골조구조물 상호작용계의 3차원 정.동적 해석)

  • 서상근;장병순
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.243-254
    • /
    • 1997
  • When dynamic loads such as mechanical load, wind load, and seismic load, which causing a vibration, acts on the body of the 3-D framework resting on soil foundation, it is required to consider the dynamic behavior of soil-space framework interation system. Thus, this study presents the 3-dimensional soil-interaction system analyzed by finite element method using 4-node plate elements with flexibility, 2-node beam elements, and 8-node brick elements for the purpose of idealizing an actual structure into a geometric shape. The objective of this study is the formulation of the equation for a dynamic motion and the development of the finite element program which can analyze the dynamic behavior of soil-space framework interaction system.

  • PDF

The Construction of Initial Analytical Models Structural Health Monitoring of a Masonry Structure

  • Kim, Seonwoong;Kim, Ji Young;Hwang, In Hwan
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.191-198
    • /
    • 2015
  • It is important to accurately predict structural responses to external excitations such as typhoons and earthquakes when designing structures for serviceability. One of the key procedures to predict reliable vibration responses is to evaluate accurate structural dynamic properties using finite element (FE) models, which properly represent the realistic behavior of buildings. In the case of historic masonry buildings, structural damage could also be caused by ambient vibrations or impacts. Therefore, the preservation plans of historic buildings for low-level vibrations or impacts should be provided by analyzing structural damages within serviceability levels. For this purpose, it is required to provide FE model construction and response analysis methods verified with field measurement data. In this research, long-term field measurement was performed for a cathedral and its dynamic properties were evaluated using measured data. Then, the model was calibrated based on the measured dynamic properties and an overall construction method for the masonry cathedral was proposed. Using the measured accelerations, the vibrations of the belfry were analyzed using the calibrated FE model and finally, the FE model for the cathedral was verified by comparing the measured accelerations with the modeled results.

Seismic behavior of steel cabinets considering nonlinear connections and site-response effects

  • Tran, Thanh-Tuan;Nguyen, Phu-Cuong;So, Gihwan;Kim, Dookie
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.17-29
    • /
    • 2020
  • This paper presents experimental and numerical studies on the seismic responses of the steel cabinet facility considering the nonlinear behavior of connections and site-response effects. Three finite element (FE) models with differences of type and number of connections between steel plates and frame members have been developed to demonstrate adequately dynamic responses of structures. The screw connections with the bilinear force-deformation relationship are proposed to represent the inelastic behavior of the cabinet. The experiment is carried out to provide a verification with improved FE models. It shows that the natural frequencies of the cabinet are sensitive to the plate and frame connectors. The screw connections reduce the free vibration compared to the weld one, with decreased values of 2.82% and 4.87% corresponding to front-to-back and side-to-side directions. Additionally, the seismic responses are investigated for various geological configurations. Input time histories are generated so that their response spectrums are compatible with a required response spectrum via the time-domain spectral matching. The results indicate that both site effects and nonlinear behavior of connections affect greatly on the seismic response of structures.