• 제목/요약/키워드: Wind Turbulence

검색결과 614건 처리시간 0.03초

Experimental analysis of the aerodynamic characteristics of a rectangular 5:1 cylinder using POD

  • Cardenas-Rondon, Juan A.;Ogueta-Gutierrez, Mikel;Franchini, Sebastian;Gomez-Ortega, Omar
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.29-42
    • /
    • 2022
  • Following the BARC initiative, wind tunnel measurements have been performed on a 5:1 rectangular cylinder. Pressure distribution has been measured in several sections, checking the two-dimensionality of the flow around the model. Mean values compare well with previous data. These measurements have been processed using the standard Proper Orthogonal Decomposition (POD) and the snapshot POD to obtain phase-resolved cycles. This decomposition has been used to analyze the characteristics of the flow around the cylinder, in particular, the behavior of the recirculation bubble in the upper/lower surfaces. The effect of the angle of attack, the turbulence intensity and the Reynolds number has been studied. First and second modes extracted from POD have been found to be related to the reattachment of the flow in the upper surface. Increasing the angle of attack is related to a delay in the reattachment position, while an increase in turbulence intensity makes the reattachment point to move towards the windward face.

Wind flow characteristics and their loading effects on flat roofs of low-rise buildings

  • Zhao, Zhongshan;Sarkar, Partha P.;Mehta, Kishor C.;Wu, Fuqiang
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.25-48
    • /
    • 2002
  • Wind flow and pressure on the roof of the Texas Tech Experimental Building are studied along with the incident wind in an effort to understand the wind-structure interaction and the mechanisms of roof pressure generation. Two distinct flow phenomena, cornering vortices and separation bubble, are investigated. It is found for the cornering vortices that the incident wind angle that favors formation of strong vortices is bounded in a range of approximately 50 degrees symmetrical about the roof-corner bisector. Peak pressures on the roof corner are produced by wind gusts approaching at wind angles conducive to strong vortex formation. A simple analytical model is established to predict fluctuating pressure coefficients on the leading roof corner from the knowledge of the mean pressure coefficients and the incident wind. For the separation bubble situation, the mean structure of the separation bubble is established. The role of incident wind turbulence in pressure-generation mechanisms for the two flow phenomena is better understood.

Vertical axis wind turbine types, efficiencies, and structural stability - A Review

  • Rehman, Shafiqur;Rafique, Muhammad M.;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.15-32
    • /
    • 2019
  • Much advancement has been made in wind power due to modern technological developments. The wind energy technology is the world's fastest-growing energy option. More power can be generated from wind energy by the use of new design and techniques of wind energy machines. The geographical areas with suitable wind speed are more favorable and preferred for wind power deployment over other sources of energy generation. Today's wind turbines are mainly the horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). HAWTs are commercially available in various sizes starting from a few kilowatts to multi-megawatts and are suitable for almost all applications, including both onshore and offshore deployment. On the other hand, VAWTs finds their places in small and residential wind applications. The objective of the present work is to review the technological development, available sizes, efficiencies, structural types, and structural stability of VAWTs. Structural stability and efficiencies of the VAWTS are found to be dependent on the structural shape and size.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

서남지역 풍황자원에 적합한 블레이드 설계 (Design of Blade system for west-south area in Korea)

  • 정의헌;문채주;곽승훈;정문선
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.400-403
    • /
    • 2009
  • Current wind turbine units that are used primarily 3Blade type devices or large-scale wind-term capacity of 2MW of 60m~90m Blade diameter is applied. This is not the best suitable design with the designing condition for the special quality of wind condition in the South-West Coastal Areas of Korea where the wind speed frequency of average wind speed and over 10m/s high wind velocity is fairly low. For this matter, in this dissertation, the expecting generation amount of electric power is measured excluding a mechanical moment, considering wind power energy traveling to the Blade when 60m~120m blade is applied, based on 2MW wind generator. Also, we would like to propose the Blade diameter which is fitted by wind condition of South-West Coastal Areas of Korea.

  • PDF

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

웹기반 해모수-1 풍황자료 분석 시스템 개발 (Development of Web-Based Wind Data Analysis System for HeMOSU-1)

  • 유기완;박근성;이종화;오수연;김지영;박명호
    • 풍력에너지저널
    • /
    • 제4권1호
    • /
    • pp.60-67
    • /
    • 2013
  • A web-based program was developed for analyzing weather and structure data from the HeMOSU-1 offshore meteorological mast installed by the KEPCO Research Institute, and 35 km west-southwestward away from Gyeokpo located in Jeonbuk province. All of the measured data are obtained through the data transmitter and the server systems equipped on the HeMOSU-1 and the aerodynamic laboratory in Chonbuk National University respectively. The dualised server system consists of two servers, one is for logging the 1 second based raw data with 10 minute averaged values, and the other is for managing web page with processed weather data. Daily or weekly 10-min averaged data can be provided based on the input date by users. Processed weather data such as wind rose, Weibull distribution, diurnal distribution, turbulence intensity according to wind speed, wind energy density, and so forth are visualized through the web page which would be both useful and informative for developing the wind farm or designing a wind blade for the wind farm nearby southwest sea around the Korean Peninsula. The URL for this web page is http://www.hemosu.org/.

등밀도 수로흐름에서 의 난류모형 비교 (Comparison of Turbulence Models in Homogeneous Channel Flows)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • 제30권1호
    • /
    • pp.13-26
    • /
    • 1995
  • Blumberg와 Mellor(1987)의 2 방정식 난류모형, Bleackadar(1962)의 1 산정식을 이용한 1 방정식 난류모양 및 Prandtl(1925)의 혼합거리식을 이용한 0 방정식 난류모 양을 일련의 등밀도 문제에 적용 비교하였다. 구체적으로 일정유량이 주어진 수심이 급변하는 수로의 흐름, 유한수로에서 의 조류의 연직구조 및 일정수심 수로에서 의 정 상상태 취송류 문제에 대하여 비교되었다. 불규칙한 수심에 일정유량이 주어진 수로 흐름 및 점모양을 이용한 조류의 수치실험에서는 적용된 난류모양 모두 거의 비슷한 결과를 보였으며, 비교적 관측된 유속구조와 부합하는 좋은 결과를 보였다. 그러나 정 상상태의 취송류 경우에는 2 방정식만이 관측된 유속과 부합하는 유속구조를 재현하 였으며, Blackadar의 l 산정식을 이용한 1, 0 방정식 난류모형은 수면근처의 유속을 관측치보다 작게 계산하였다. 이류항 및 수평확산항의 영향이 작은 조류 및 취송류의 경우, 2 방정식 난류모형에 의한 연직와점성계수 이류항 및 수평확산항의 영향이 작은 조류 및 취송류의 경우, 2 방정식 난류모양에 의한 연직와점성계수 및 특성길이의 연 직분포는 중간수심에서 최대값을 갖는 포물형이었으며, Blackadar의 l 산정식을 사용 한 1, 0 방정식 난류모형에 의한 연직와점성계수 및 혼합특성길이의 연직분포는 수면 에서 최대인 선형에 가까웠다.

  • PDF

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo;Park, Moon-Soo;Lee, Joonsuk;Jang, Yu Woon
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1223-1237
    • /
    • 2020
  • This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.