• Title/Summary/Keyword: Wind Turbines

Search Result 638, Processing Time 0.05 seconds

Development of Unmanned Remote Monitoring System for MW Class Wind Turbines (대형 풍력터빈을 위한 무인 원격감시시스템 개발)

  • Park, Joon-Young;Kim, Beom-Joo;Lee, Jae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.412-418
    • /
    • 2011
  • The scale of wind turbines has continuously increased over the last decade. Especially, the rapid growth of the rotor diameter has brought about the increase of the tower height and the load on the rotor blade, as can be seen in the case of a 5MW class wind turbine with 126m rotor diameter. This trend means the increasing possibility of system failure. In addition to that, it is impossible for human operators to stay and manage all the turbines in the case of a large-scale wind farm. For these reasons, the operation and maintenance technology is getting more importance. In this paper, we present an unmanned remote monitoring system for MW class wind turbines and its application to YeungHeung wind test bed.

Operation Scheme for a Wind Farm to Mitigate Output Power Variation

  • Lee, Sung-Eun;Won, Dong-Jun;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.869-875
    • /
    • 2012
  • Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to improve power system reliability and power quality. This paper proposes three operation modes of wind farms such as maximum power point tracking (MPPT) mode, single wind turbine control mode and wind farm control mode to control the output power of wind turbines as well as overall wind farms. This paper also proposes an operation scheme of wind farm to alleviate power fluctuation of wind farm by choosing the appropriate control mode and coordinating multiple wind turbines in consideration of grid conditions. The performance of the proposed scheme is verified via simulation studies in PSCAD/EMTDC with doubly-fed induction generator (DFIG) based wind turbine models.

A Comparative Study on Lightning Characteristics and Lightning Damage to Wind Turbines of Jeju and Gangwon Region (제주와 강원 지역의 낙뢰특성 및 풍력발전기의 낙뢰피해 비교 연구)

  • Yang, Dal-Seung;Kim, Kyoung-Bo;Ko, Kyung-Nam
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-143
    • /
    • 2014
  • An investigation on lightning characteristics and damage to wind turbines was performed on Jeju and Gangwon regions. The lightning data from January 2010 to September 2013 detected by IMPACT ESP were collected and analyzed in detail. Hangyeong and Seongsan wind farms of Jeju province and Taebaek, Changjuk, Taegisan and Gangwon wind farms of Gangwon province were selected for this study. Lightning rates and lightning damage events at the six wind farms were compared with each other. Lightning maps for the two regions were drawn using lightning frequency data. As a result, lightning frequency of Gangwon region was higher than that of Jeju region, while lightning strength of Gangwon was weaker than that of Jeju. Lightning rates were assessed to be good for all of the six wind farms. No lightning damage to wind turbines occurred at the two wind farms of Jeju, while some lightning damage to wind turbines took place at the four wind farms of Gangwon.

Vertical axis wind turbine types, efficiencies, and structural stability - A Review

  • Rehman, Shafiqur;Rafique, Muhammad M.;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • Much advancement has been made in wind power due to modern technological developments. The wind energy technology is the world's fastest-growing energy option. More power can be generated from wind energy by the use of new design and techniques of wind energy machines. The geographical areas with suitable wind speed are more favorable and preferred for wind power deployment over other sources of energy generation. Today's wind turbines are mainly the horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). HAWTs are commercially available in various sizes starting from a few kilowatts to multi-megawatts and are suitable for almost all applications, including both onshore and offshore deployment. On the other hand, VAWTs finds their places in small and residential wind applications. The objective of the present work is to review the technological development, available sizes, efficiencies, structural types, and structural stability of VAWTs. Structural stability and efficiencies of the VAWTS are found to be dependent on the structural shape and size.

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

Dynamic behavior of TLP's supporting 5-MW wind turbines under multi-directional waves

  • Abou-Rayan, Ashraf M.;Khalil, Nader N.;Afify, Mohamed S.
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.203-216
    • /
    • 2016
  • Over recent years the offshore wind turbines are becoming more feasible solution to the energy problem, which is crucial for Egypt. In this article a three floating support structure, tension leg platform types (TLP), for 5-MW wind turbine have been considered. The dynamic behavior of a triangular, square, and pentagon TLP configurations under multi-directional regular and random waves have been investigated. The environmental loads have been considered according to the Egyptian Metrological Authority records in northern Red sea zone. The dynamic analysis were carried out using ANSYS-AQWA a finite element analysis software, FAST a wind turbine dynamic software, and MATLAB software. Investigation results give a better understanding of dynamical behavior and stability of the floating wind turbines. Results include time history, Power Spectrum densities (PSD's), and plan stability for all configurations.

Experimental investigation into infrasound and low-frequency noise radiation characteristics from large wind turbines (중대형 풍력터빈의 저주파 및 초저주파 소음 방사 특성에 대한 실험적 고찰)

  • Lee, Seung-Yub;Cheong, Cheol-Ung;Shin, Su-Hyun;Jung, Sung-Soo;Cheung, Wan-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1482-1489
    • /
    • 2007
  • In this paper, characteristics of infrasound and low-frequency noise emission from large modern wind turbines are experimentally investigated. The sound measurement procedures of IEC 61400-11 and ISO 7196 are utilized to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines using the stall regulation and the pitch control for the power regulation, respectively. It was found that the G-weighted SPLs of low-frequency noise including infrasound shows positive correlation with the wind speeds, irrespective of methods of power regulation. This highlights the potential complaint of local community against the infrasound and low-frequency noise of wind turbines. The comparison of measured data with the existing hearing thresholds and criteria curves shows that it is highly probable that the low-frequency noise from the 1.5 MW and 660 kW wind turbines in the frequency range over 30 Hz leads to the psychological complaint of ordinary adults, and that the infrasound in the frequency range from 5 Hz to 8 Hz causes the complaint by rattling the house fitting such as doors and windows.

  • PDF

Along-wind simplified analysis of wind turbines through a coupled blade-tower model

  • Spagnoli, Andrea;Montanari, Lorenzo
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.589-608
    • /
    • 2013
  • A model is proposed to analyse the along-wind dynamic response of upwind turbines with horizontal axis under service wind conditions. The model takes into account the dynamic coupling effect between rotor blades and supporting tower. The wind speed field is decomposed into a mean component, accounting for the well-known wind shear effect, and a fluctuating component, treated through a spectral approach. Accordingly, the so-called rotationally sampled spectra are introduced for the blades to account for the effect of their rotating motion. Wind forces acting on the rotor blades are calculated according to the blade element momentum model. The tower shadow effect is also included in the present model. Two examples of a large and medium size wind turbines are modelled, and their dynamic response is analysed and compared with the results of a conventional static analysis.

Wind Turbine Airfoils considering Surface Roughness Effects (표면거칠기 둔감도를 고려한 풍력발전기용 익형 개발)

  • Kim, Seok-Woo;Shin, Hyung-Ki;Jang, Moon-Seok
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.36-44
    • /
    • 2007
  • Most airfoils for wind turbines commercially available have been developed for aircrafts, which are operated at high Reynolds numbers. However, Reynolds numbers of wind turbines are very low compared to those of aircrafts. In other to improve wind turbine performances, airfoils for the use of wind turbine shall be designed such as S-series airfoils developed by NREL in America. The authors have designed new airfoils for wind turbines considering designated operation conditions of wind turbines and even local wind resources in Korea. The designed airfoils are characterized by improved roughness insensitivities compared to other airfoils such as S814 and S820. The developed KWA005-240 and KWA009-127 are for root and tip sections of a wind turbine blade, respectively. Although the results show much improved performances against NACA airfoils, performance data of post-stall regulation loses some accuracies due to the characteristics of the simulation tool of XFOIL. Therefore, wind tunnel experiments are required for more accurate evaluation of the designed airfoils. Currently, the experiments has been completed and the data analysis works are going on now. The final results obtained from the experiments will be published soon.

  • PDF

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R.;Dai, Kaoshan;Lu, Wensheng;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.195-207
    • /
    • 2019
  • This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.