• Title/Summary/Keyword: Wind Turbine Test

Search Result 330, Processing Time 0.03 seconds

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.303-312
    • /
    • 2022
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

Structure Design and Experimental Appraisal of the Drag Force Type Vertical Axis Wind Turbine (수직축 항력식 풍력터빈의 구조설계 및 실험평가)

  • Kim Dong-Keon;Keum Jong-Yoon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.278-286
    • /
    • 2006
  • Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades$(\alpha)$ and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, $\alpha=60^{\circ}$ and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of $\Omega=0.33$, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed.

Noise Performance Test and Evaluation of a Wind Turbing Generator (풍력발전기 소음 성능 실증)

  • Kim, Seock-Hyun;Kim, Tae-Hyung;Park, Moo-Yeol;Chui, C.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.241-245
    • /
    • 2005
  • This study introduces the wind turbine (W/T) noise evaluation procedure required in the international standard (IEC 61400-11) and monitoring system for the evaluation. Noise emission characteristics of a 750kW W/T generator is investigated. Test and evaluation are performed on J48 W/T model which is under operation in Daekwanryung Wind Test Site. With the noise signal, meteorological data and W/T operational data are monitored in real time by the integrated monitoring system using LabVIEW. From the measured noise data, acoustic power level and tonality of the W/T are estimated under the wind speeds required by the international standard.

  • PDF

750kW-class DFIG Wind Turbine Monitoring System Development and Study on Scheme for Applying Standardized Communication (750kW급 DFIG 풍력 발전기 모니터링 시스템 개발 및 통신 표준화 적용 방안에 관한 연구)

  • Lee, Duck-Su;Lee, Jun-Chul;Choi, In-Sun;Choi, Young-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.327-330
    • /
    • 2008
  • This paper presents monitoring system for 750kW-class DFIG wind turbine generator system and an architecture for applying standardized communication, IEC61400-25. Monitoring and control system is consists of wind turbine PLC, Local and Remote I/O Server, HMI. and Web-server. Proposed System has been demonstrated in Daegi-ri, Kangwon-do, which aims to test local and/or remote monitoring and control system and evaluate the performance of 750kW-class WTS. Finally we described the design of logical nodes and services based on IEC61400-25 and its application scheme.

  • PDF

A Study on the Improvement of Domestic Wind Turbine Certification System (국내 풍력발전시스템 인증제도 개선방안에 관한 연구)

  • Jang, Ho-Jin;Park, Jung-Ha;Park, Young-Hyun;Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.125-131
    • /
    • 2011
  • Recently, the application of renewable energy to building is steadily increasing in domestic due to the energy saving efforts around the world. Among the all, wind energy is one of the rising energy source because of its high technological maturity. Domestic wind power market has rapidly increased in recent years but the certification system for wind turbine has not been activated since it was introduced in 2009. Thus, this study aims to propose the improvement of certification system for wind turbine by comparing domestic certification system with international certification system. The result of this study are as follows. First, domestic certification system needs to be subdivided and established by systematic standards. Second, it is considered that education about rating standards is required to wind turbine makers to activate domestic certification system. Third, domestic certification agenciesand test agencies need to be unified and reduced.

Analysis of Air Current Characteristics for Installing Wind Turbines Between Buildings (건물 사이에 풍력발전기를 설치하기 위한 기류특성분석)

  • Park, Min-Woo;You, Jang-Youl;Sohn, Young-Moo;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.117-125
    • /
    • 2018
  • Recently, various building integrated wind power (BIWP) approaches have been used to produce energy by installing wind power generators in high-rise buildings constructed in urban areas. BIWP has advantages in that it does not require support to position the turbine up to the installation height, and the energy produced by the wind turbine can be applied directly to the building. The accurate evaluation of wind speed is important in urban wind power generation. In this study, a wind tunnel test and computational fluid dynamics (CFD) analysis were conducted to evaluate the wind speed for installing wind turbines between buildings. The analysis results showed that the longer the length of the buildings, which had the same height, the larger the wind speed between the two buildings. Furthermore, the narrower the building's width, the higher the wind velocity; these outcomes are due to the increase in the Venturi effect. In addition, the correlation coefficient between the results of the wind tunnel test and the CFD analysis was higher than 0.8, which is a very high value.

Performance Measurement of the Eddy Current Heat Generator with Different Array of Permanent Magnets (서로 다른 자석 배열을 가지는 와전류 열원화 장치의 성능 측정)

  • Yun, Teak-Han;Son, Young-Woo;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Eddy Current is one of ways to make heat using rotational energy of wind turbine rotor. Four difference arrays of permanent magnets around rotor surface are used to generate heat using eddy current in this study. For the evaluation of heating performance, new test rig is prepared to measure water flow and temperatures in the inlet and outlet of the eddy current heat generator. In the test, torque and rotational speed are also measured in the motor driven system, and evaluated if the torque is matched with it of wind turbine rotor or not. It will be shown that the eddy current heat generator can be applied to real urban wind energy systems in this study.

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seokhyun;Nam, Y.S.;Eun, Sungyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

Study on Enhancement of Data Processing Algorithm in SaaS Cloud Infrastructure to Monitor Wind Turbine Condition (풍력발전기 상태 감시를 위한 SaaS 클라우드 인프라 내 데이터 처리 알고리즘 개선 연구)

  • Lee, Gwang-Se;Choi, Jungchul;Kang, Minsang;Park, Sail;Lee, JinJae
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • In this study, an SW for the analysis of the wind-turbine vibration characteristics was developed as an application of SaaS cloud infrastructure. A measurement system for power-performance, mechanical load, and gearbox vibration as type-test class was installed at a target MW-class wind turbine, and structural meta and raw data were then acquired into the cloud. Data processing algorithms were developed to provide cloud data to the SW. To operate the SW continuously, raw data was downloaded consistently based on the algorithms. During the SW test, an intermittent long time-delay occurred due to the communication load associated with frequent access to the cloud. To solve this, a compression service for the target raw data was developed in the cloud and more stable data processing was confirmed. Using the compression service, stable big data processing of wind turbines, including gearbox vibration analysis, is expected.