• Title/Summary/Keyword: Wind Turbine Generator System (WTGS)

Search Result 17, Processing Time 0.069 seconds

Load Calculation of a 750 kW Direct-drive Wind Turbine Generator System (750kW급 직접구동형 풍력발전기의 부하계산)

  • Sohn, Y.U.;Park, I.S.;Kwon, S.J.;Kim, Y.C.;Son, J.B.;Kim, K.R.;Chung, C.W.;Chun, J.H.;Ryu, J.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.649-655
    • /
    • 2003
  • Load calculation is indispensable for the construction of a large wind turbine generator system (WTGS). In procedures of load calculation, all conditions affecting to WTGS such as environment of site, operation, transport and installation have to be considered systematically. So the certification of WTGS is issued by assuring the load calculation. This work shows the generals of load calculation briefly and introduces the characteristics and results of load calculations for the 750 kW direct-drive WTGS (KBP-750D) which is under development by the consortium of POSTECH and UNISON.

  • PDF

Pitch Control for Wind Turbine Generator System (풍력 발전시스템 피치 제어에 관한 연구)

  • Park, Jong-Hyeok;No, Tae-Su;Mun, Jeong-Hui;Kim, Ji-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.25-34
    • /
    • 2006
  • In this paper, a method of designing the pitch control algorithm for the wind turbine generator system (WTGS) and results of nonlinear simulation are presented. For this, the WTGS is treated as a multibody system and the blade element and momentum theory are adopted to model the aerodynamic force and torque acting the rotor blades. For the purpose of controller design, the WTGS is approximated to 1 DOF system using the fact that the WTGS is eventually a constrained multibody system. Then a classical PID controller is designed and used to regulate the rotational speed of the generator. FORTRAN based nonlinear simulation program is written and used to evaluate the performance of the proposed controller at the various wind scenario and operational modes.

Modeling and Analysis of Wind Turbine Generating System at Haeng-Won in Jeju Island (제주 행원 풍력발전 시스템의 모델링 및 해석)

  • Jeon Young-Jin;Kim Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.563-566
    • /
    • 2002
  • This paper presents the modeling and analysis of wind turbine generating system(WTGS) using doubly fed induction machine as a generator Generally, wind turbine generating system is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from the WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, computer simulation using Psim program are presented to support the discussion.

  • PDF

Modeling and Analysis of V47-660 kW Wind Turbine Generator System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 모델링 및 해석)

  • Kim, Eel-Hwan;Kang, Geong-Bo;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • This paper presents the modeling and analysis of V47-660 kW wind turbine generation system(WTGS) in Jeju wind farm using Psim program. Generally, WTGS is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from V47 WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, results of computer simulation using Psim program are presented to support the discussion.

Development of Performance Analysis S/W for Wind Turbine Generator System (풍력발전시스템 성능 해석 S/W 개발에 관한 연구)

  • Mun, Jung-Heu;No, Tae-Soo;Kim, Ji-Yon;Kim, Sung-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.202-209
    • /
    • 2008
  • Application of wind turbine generator system (WTGS) needs researches for performance prediction, pitch control, and optimal operation method. Recently a new type WTGS is developed and under testing. The notable feature of this WTGS is that it consists of two rotor systems positioned horizontally at upwind and downwind locations, and a generator installed vertically inside the tower. In this paper, a nonlinear simulation software developed for the performance prediction of the Dual Rotor WTGS and testing of various control algorithm is introduced. This software is hybrid in the sense that FORTRAN is extensively used for the purpose of computation and Matlab/Simulink provides a user friendly GUI-like environment.

Reliability Evaluation of a Distribution System with wind Turbine Generators Based on the Switch-section Partitioning Method

  • Wu, Hongbin;Guo, Jinjin;Ding, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 2016
  • Considering the randomness and uncertainty of wind power, a reliability model of WTGs is established based on the combination of the Weibull distribution and the Markov chain. To analyze the failure mode quickly, we use the switch-section partitioning method. After defining the first-level load zone node, we can obtain the supply power sets of the first-level load zone nodes with each WTG. Based on the supply sets, we propose the dynamic division strategy of island operation. By adopting the fault analysis method with the attributes defined in the switch-section, we evaluate the reliability of the distribution network with WTGs using a sequential Monte Carlo simulation method. Finally, using the IEEE RBTS Bus6 test system, we demonstrate the efficacy of the proposed model and method by comparing different schemes to access the WTGs.

Preliminary Validation of Wind Turbine Generator System Performance Analysis S/W, WINSIM (풍력발전시스템 성능 해석 S/W의 초기 검증에 관한 연구)

  • Mun, Jung-Heu;No, Tae-Soo;Park, Jong-Hyuk;Kim, Sung-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.209-214
    • /
    • 2009
  • The simulation software for predicting the performance of a wind turbine generator system (WTGS) is validated using the field measured data obtained from the idling test run of a dual rotor wind turbine recently developed and installed in Korea. Both steady-state and transient responses at low and high wind conditions are compared with the theoretically predicted ones from the simulation software WINSIM.

Evaluation of Power Performance by Anemometer on WTGS (풍력발전기 너셀에 장착된 풍속계를 이용한 출력성능 평가)

  • Kim, Soo-Sang;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.303-310
    • /
    • 2012
  • We carried out the power performance evaluation for 1.5 MW${\times}$2 by using anemometer installed on WTGS(Wind Turbine Generator System) in the wind farm at Shi-hwa bang-a-mu-ri. In this paper, we compared and analyzed the performance of guaranteed output and measured output of WTGS which includes output curve, output coefficient, AEP(Annual Energy Product) and availability, etc.. The power performance of WTGS was optimized in the low wind speed sections(3 m/s ~ 10 m/s) and the measured output was more produced by AEP 109 % and availability 112 % than the guaranteed output. In addition, we could also cut the high cost of testing WTGS performance by using anemometer as a substitute for weather mast.

A Study on the Early Fire Detection based on Environmental Characteristics inside the Nacelle of Wind Turbine Generator System (풍력발전기 너셀 내부 환경특성을 고려한 화재 조기감지방법 연구)

  • Kim, Da Hee;Lim, Jong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.847-854
    • /
    • 2014
  • The paper presented a method of early fire detection based on the environmental characteristics inside the nacelle of wind turbine generator system(WTGS). The rising rates of the temperature and smoke density were used as the parameters for early fire detection. By considering the characteristics of temperature and smoke density of a nacelle, this method is very reliable and can minimize the possibility of a malfunction of fire detection. The performance of the method was tested through sets of experiments by using nacelle simulator.

A Fire Prevention System of the Nacelle of Wind Turbine Generator System Based on Broadband Powerline Communication (광대역 전력선통신 기반 풍력발전기 너셀 내부 화재예방시스템)

  • Kim, Hyun-Sik;Ju, Woo-Jin;Kang, Seog Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1229-1234
    • /
    • 2018
  • In this paper, a fire prevention system based on a broadband powerline communication (PLC) system is implemented and a demonstration experiment is carried out to prevent from or promptly dealing with possible fires within the nacelle of a wind turbine generator system (WTGS). For this purpose, an inductive coupler having satisfactory attenuation characteristic in the frequency region for high-speed PLC is also manufactured. It is confirmed that the implemented system can monitor the environmental change inside the nacelle in real time by transmitting various information obtained by the sensors such as temperature, flame, and smoke sensor installed in the nacelle and thermal image recorded by a thermal camera to the ground control center through the PLC system. Therefore, it is, considered that the implemented system will significantly improve the reliability of the fire monitoring and prevention system of the WTGS in conjunction with the existing safety system.