• Title/Summary/Keyword: Wind Speed Dependence

Search Result 35, Processing Time 0.023 seconds

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

Variation of Underwater Ambient Noise Observed at IORS Station as a Pilot Study

  • Kim, Bong-Chae;Choi, Bok-Kyoung
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.175-179
    • /
    • 2006
  • The Ieodo Ocean Research Station(IORS) is an integrated meteorological and oceanographic observation base which was constructed on the Ieodo underwater rock located at a distance of about 150 km to the south-west of the Mara-do, the southernmost island in Korea. The underwater ambient noise level observed at the IORS was similar to the results of the shallow water surrounding the Korean Peninsula (Choi et al. 2003) and was higher than that of deep ocean (Wenz 1962). The wind dependence of ambient noise was dominant at frequencies of a few kHz. The surface current dependence of ambient noise showed good correlation with the ambient noise in the frequency of 10 kHz. Especially, the shrimp sound was estimated through investigations of waveform and spectrum and its main acoustic energy was about 40 dB larger than ambient noise level at 5 kHz.

Estimation of Polarization Ratio for Sea Surface Wind Retrieval from SIR-C SAR Data

  • Kim, Tae-Sung;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.729-741
    • /
    • 2011
  • Wind speeds have long been estimated from C-band VV-polarized SAR data by using the CMOD algorithms such as CMOD4, CMOD5, and CMOD_IFR2. Some SAR data with HH-polarization without any observations in VV-polarization mode should be converted to VV-polarized value in order to use the previous algorithms based on VV-polarized observation. To satisfy the necessity of polarization ratio (PR) for the conversion, we retrieved the conversion parameter from full-polarized SIR-C SAR image off the east coast of Korea. The polarization ratio for SIR-C SAR data was estimated to 0.47. To assess the accuracy of the polarization ratio coefficient, pseudo VV-polarized normalized radar cross section (NRCS) values were calculated and compared with the original VV-polarized ones. As a result, the estimated psudo values showed a good agreement with the original VV-polarized data with an root mean square error by 0.99 dB. We applied the psudo NRCS to the estimation of wind speeds based on the CMOD wind models. Comparison of the retrieved wind field with the ECMWF and NCEP/NCAR reanalysis wind data showed relatively small rms errors of 1.88 and 1.91 m/s, respectively. SIR-C HH-polarized SAR wind retrievals met the requirement of the scatterometer winds in overall. However, the polarization ratio coefficient revealed dependence on NRCS value, wind speed, and incident angle.

Practical estimation of veering effects on high-rise structures: a database-assisted design approach

  • Yeo, DongHun
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.355-367
    • /
    • 2012
  • Atmospheric boundary layer winds experience two types of effects due to friction at the ground surface. One effect is the increase of the wind speeds with height above the surface. The second effect, called the Ekman layer effect, entails veering - the change of the wind speed direction as a function of height above the surface. In this study a practical procedure is developed within a database-assisted design (DAD) framework that accounts approximately for veering effects on tall building design. The procedure was applied in a case study of a 60-story reinforced concrete building, which also considered the dependence of veering effects on the orientation of the building. Comparisons are presented between response estimates that do not account for veering, and account for veering conservatively. For the case studied in this paper veering effects were found to be small.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

Prediction model for whistler chorus waves responsible for energetic electron acceleration and scattering

  • Kim, Jin-Hee;Lee, Dae-Young;Cho, Jung-Hee;Shin, Dae-Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.94.1-94.1
    • /
    • 2013
  • Whistler mode chorus waves, which are observed outside the plasmasphere of the Earth's magnetosphere, play a major role in accelerating and scattering energetic electrons in the radiation belts. In this study we developed a predicting scheme of the global distribution of chorus by using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data. First, we determined global spatial distributions of chorus activity, and identified fit functions that best represent chorus intensities in specific L-MLT zones. Second, we determined the specific dependence of average chorus intensity on preceding solar wind conditions (e.g., solar wind speed, IMF Bz, energy coupling degree) as well as preceding geomagnetic states (as represented by AE, for example). Finally, we combined these two results to develop the predicting functions for the global distribution and intensity of chorus. Implementing these results in the radiation belt models should improve the local acceleration effect by chorus waves.

  • PDF

Spatiotemporal variations and source apportionment of NOx, SO2, and O3 emissions around heavily industrial locality

  • Al-Harbi, Meshari;Al-majed, Abdulrahman;Abahussain, Asma
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.147-162
    • /
    • 2020
  • The main objective of this study is to estimate the levels of pollution to which the community is presently exposed and to model the regimes of local air quality. Diurnal, daily, and monthly variations of NO, NO2, SO2, and O3 were thoroughly investigated in three areas; namely, residential, industrial, and terminal in Ras Al-Khafji. There is obvious diurnal variation in the concentration of these pollutants that clearly follows the diurnal variation of atmospheric temperature and main anthropogenic and industrial activities. Correlation analysis showed that meteorological conditions play a vital role in shaping the pattern and transportation of air pollutants and photochemical processes affecting O3 formation and destruction. Bivariate polar plots, an effective graphical tool that utilizes air pollutant concentrations' dependence on wind speed and wind direction, were used to identify prevailing emission sources. Non-buoyant ground-level sources like domestic heating and street transport emissions, various industrial stacks, and airport-related activities were considered dominant emission sources in observatory sites. This study offers valuable and detailed information on the status of air quality, which has considerable, quantifiable, and important public health benefits.

Accuracy and Error Characteristics of SMOS Sea Surface Salinity in the Seas around Korea

  • Park, Kyung-Ae;Park, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.356-366
    • /
    • 2020
  • The accuracy of satellite-observed sea surface salinity (SSS) was evaluated in comparison with in-situ salinity measurements from ARGO floats and buoys in the seas around the Korean Peninsula, the northwest Pacific, and the global ocean. Differences in satellite SSS and in-situ measurements (SSS errors) indicated characteristic dependences on geolocation, sea surface temperature (SST), and other oceanic and atmospheric conditions. Overall, the root-mean-square (rms) errors of non-averaged SMOS SSSs ranged from approximately 0.8-1.08 psu for each in-situ salinity dataset consisting of ARGO measurements and non-ARGO data from CTD and buoy measurements in both local seas and the ocean. All SMOS SSSs exhibited characteristic negative bias errors at a range of -0.50- -0.10 psu in the global ocean and the northwest Pacific, respectively. Both rms and bias errors increased to 1.07 psu and -0.17 psu, respectively, in the East Sea. An analysis of the SSS errors indicated dependence on the latitude, SST, and wind speed. The differences of SMOS-derived SSSs from in-situ salinity data tended to be amplified at high latitudes (40-60°N) and high sea water salinity. Wind speeds contributed to the underestimation of SMOS salinity with negative bias compared with in-situ salinity measurements. Continuous and extensive validation of satellite-observed salinity in the local seas around Korea should be further investigated for proper use.

Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific

  • Kim, Hee-Young;Park, Kyung-Ae;Chung, Sung-Rae;Baek, Seon-Kyun;Lee, Byung-Il;Shin, In-Chul;Chung, Chu-Yong;Kim, Jae-Gwan;Jung, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor(GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to $0.93^{\circ}C$ and $0.05^{\circ}C$, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above $30^{\circ}N$. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

Analysis of Electromagnetic Wave Scattering from a Sea Surface Using a Monte-Carlo FDTD Technique

  • Choi Dong-Muk;Kim Che-Young;Kim Dong-Il;Jeon Joong-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2005
  • This paper presents a Monte-Carlo FDTD technique to determine the scattered field from a perfectly conducting surface like a sea surface, from which the useful information on the incoherent pattern tendency could be observed. A one-dimensional sea surface used to analysis scattering was generated using the Pierson-Moskowitz model. In order to verify the numerical results by this technique, these results are compared with those of the small perturbation method, which show a good match between them. To investigate the incoherent pattern tendency involved, the dependence of the back scattering coefficients on the different wind speed(U) is discussed for the back scattering case.