• 제목/요약/키워드: Wind Speed

검색결과 3,310건 처리시간 0.029초

동특성해석을 위한 계통연계 풍력발전 시스템의 모델링 (Modeling of a Grid-Connected Wind Energy Conversion System for Dynamic Performance Analysis)

  • 추연식;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1358-1360
    • /
    • 2002
  • This paper presents a modeling and simulation of a utility-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for the wind turbine and presents the relationship of wind turbine output, rotor speed, power coefficient, tip-speed ratio and wind speed when the wind turbine is operated under the maximum power control algorithm. The control objective is to extract maximum power from wind and transfer the power to the utility. This is achieved by controlling the pitch angle of the wind turbine blades. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor speed, pitch angle, and generator output.

  • PDF

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

풍력터빈 성능시험을 위한 저속풍동 개념연구 (Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine)

  • 강승희
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

키위나무의 바람에 대한 특성연구 (Basic characteristics of wind-blown kiwifruit vines)

  • 강종훈;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.101-104
    • /
    • 2007
  • Kiwifruit vines with broad leaves are easily torn or shed by high-speed wind. In this study, the threshold wind speed at which a cane is broken was investigated experimentally with varying physical parameters of a kiwifruit vine under two different ABL (atmospheric boundary layer) conditions. In addition, the temporal variation of wind-blown young canes was visualized using a high-speed camera. The average threshold wind speeds for ABL types A and B are about 20.5 m/s and 18.9 m/s, respectively. A wind-blown young cane takes periodic up-and-down motion when it is broken off. The mean motion frequency of young canes of the kiwifruit vines was found to be about 4.5Hz.

  • PDF

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models

  • Quan, Yong;Fu, Guo Qiang;Huang, Zi Feng;Gu, Ming
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.269-285
    • /
    • 2020
  • The statistical characteristics of typhoon wind speed records tend to have a considerable time-varying trend; thus, the stationary wind model may not be appropriate to estimate the wind characteristics of typhoon events. Several nonstationary wind speed models have been proposed by pioneers to characterize wind characteristics more accurately, but comparative studies on the applicability of the different wind models are still lacking. In this study, three landfall typhoons, Ampil, Jongdari, and Rumbia, recorded by ultrasonic anemometers atop the Shanghai World Financial Center (SWFC), are used for the comparative analysis of stationary and nonstationary wind characteristics. The time-varying mean is extracted with the discrete wavelet transform (DWT) method, and the time-varying standard deviation is calculated by the autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model. After extracting the time-varying trend, the longitudinal wind characteristics, e.g., the probability distribution, power spectral density (PSD), turbulence integral scale, turbulence intensity, gust factor, and peak factor, are comparatively analyzed based on the stationary wind speed model, time-varying mean wind speed model and time-varying standard deviation wind speed model. The comparative analysis of the different wind models emphasizes the significance of the nonstationary considerations in typhoon events. The time-varying standard deviation model can better identify the similarities among the different typhoons and appropriately describe the nonstationary wind characteristics of the typhoons.

A Reliability Evaluation Model for the Power Devices Used in Power Converter Systems Considering the Effect of the Different Time Scales of the Wind Speed Profile

  • Ji, Haiting;Li, Hui;Li, Yang;Yang, Li;Lei, Guoping;Xiao, Hongwei;Zhao, Jie;Shi, Lefeng
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.685-694
    • /
    • 2016
  • This paper presents a reliability assessment model for the power semiconductors used in wind turbine power converters. In this study, the thermal loadings at different timescales of wind speed are considered. First, in order to address the influence of long-term thermal cycling caused by variations in wind speed, the power converter operation state is partitioned into different phases in terms of average wind speed and wind turbulence. Therefore, the contributions can be considered separately. Then, in regards to the reliability assessment caused by short-term thermal cycling, the wind profile is converted to a wind speed distribution, and the contribution of different wind speeds to the final failure rate is accumulated. Finally, the reliability of an actual power converter semiconductor for a 2.5 MW wind turbine is assessed, and the failure rates induced by different timescale thermal behavior patterns are compared. The effects of various parameters such as cut-in, rated, cut-out wind speed on the failure rate of power devices are also analyzed based on the proposed model.

파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성 (Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation)

  • 정성수;정완섭;신수현;전세종;최용문;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

중규모 수치모델 WRF를 이용한 북한 풍력-기상자원지도 개발 (Development of wind Map Over North Korea using the Mesoscale Model WRF)

  • 서범근;변재영;최영진
    • 대기
    • /
    • 제21권4호
    • /
    • pp.471-480
    • /
    • 2011
  • This study investigates the characteristics of surface wind in North Korea using mesoscale model WRF. Hourly wind fields were simulated for one year representing mean characteristics of an 11-years period from 1998 to 2008. The simulations were performed on a nested grid from 27 km to 1 km horizontal resolution. The simulated wind map at 10 m above ground level is verified with 27 surface observations. Statistical verification skill score indicates that wind speed tends to overestimate in surface layer. The average RMSE value of the simulated wind speed is around $2.8ms^{-1}$. Wind map in North Korea showed that strong wind speed is distributed in the mountainous and western coastal region. The results of this wind mapping study contribute for the founding of wind energy potential location.