• 제목/요약/키워드: Wind Power Energy

검색결과 1,532건 처리시간 0.024초

제주 행원 풍력발전단지의 출력 안정화를 위한 에너지저장시스템 용량산정에 관한 연구 (A Study on the Determining ESS Capacity for Stabilizing Power Output of Haeng-won Wind Farm in Jeju)

  • 강명석;진경민;김일환;오성보;이정민
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.25-31
    • /
    • 2012
  • This paper presents the characteristics of power generation output at Haeng-won wind farm and how to determine the optimized ESS capacity for power stabilizing. Depend on the fluctuation rate of wind power output variation, wind farm capacity and site, power stabilization will be impacted. Therefore, we need to determine proper ESS capacity. Using the actual data of Haeng-won wind farm from 2009. 3 to 2010.2., capacity of ESS was determined by moving average value. To verify the proposed algorithm, simulations are carried out with PSCAD/EMTDC program. As a result, optimal ESS capacity of Haeng-won wind farm in Jeju is estimated about 1.63 MWh.

A Reliability Model of Wind Farm Considering the Complex Terrain and Cable Failure Based on Clustering Algorithm

  • Liu, Wenxia;Chen, Qi;Zhang, Yuying;Qiu, Guobing;Lin, Chenghui
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1891-1899
    • /
    • 2014
  • A reliability model of wind farm located in mountainous land with complex terrain, which considers the cable and wind turbine (WT) failures, is proposed in this paper. Simple wake effect has been developed to be applied to the wind farm in mountainous land. The component failures in the wind farm like the cable and WT failures which contribute to the wind farm power output (WFPO) and reliability is investigated. Combing the wind speed distribution and the characteristic of wind turbine power output (WTPO), Monte Carlo simulation (MCS) is used to obtain the WFPO. Based on clustering algorithm the multi-state model of a wind farm is proposed. The accuracy of the model is analyzed and then applied to IEEE-RTS 79 for adequacy assessment.

전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션 (Simulation of the Wind Power Generation System with Energy Storage System)

  • 오시덕;임희수;서석호;김기영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

복잡지형 형상에 따른 풍력자원 보정에 관한 연구 (A study on wind source interpolation based on shape of complex topography)

  • 정의헌;문채주;김의선;장영학
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.62-68
    • /
    • 2009
  • There has been a continuous increase in the utilization and utility value of renewable energy such as wind power generation in modem society. Wind condition is the absolute variable to the energy volume in the case of a wind power generation system. For this reason, wind power generators have already been installed in areas where wind velocity is high and the possibility of danger is very low. In other words, instability is likely if the wind velocity in an area is high and where a wind power generation system can be built. On the contrary, low wind velocity is possible in an area with high stability. Therefore, the design and manufacture of a wind power generation system should be carried out in a more complicated topography in order to secure a bigger market. This study examines and suggest how topography affects wind shear by analyzing the measured data in order to predict wind power generation more reliably.

대학교 캠퍼스의 풍력자원 측정 및 분석 (Wind Resource Measurements and Analysis at the University Campus)

  • 윤재옥;김명래
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.19-24
    • /
    • 2008
  • The wind-power among the new and renewable energies uses the wind, a limitless, clean and pure energy which is available at any place. It requires low installation cost compared to the generation of other renewable energies, and is easy to operate, and furthermore, can be automated for operation. Korea has been taking a great deal of interest in the development of renewable energy generating equipment, specifically wind power generation as the nation has a nearly total reliance on imported petroleum. A measuring poll 30m high was installed at a location with an altitude of 142m above the sea level in order to measure and analyze the wind power potentiality at H University's Asan Campus, and the wind velocity and wind direction were measured for 1 year. As for the wind power resource of the area adjacent to Asan campus, the Weibull Distribution coefficient was C=2.68, K =1.29 at H30m. Weibull Distribution coefficient was modified on the basis of compensated wind velocity (=3.1m/s) at H 60m, and the energy density was $42W/m^2$. AEP 223,750 KWh was forecast based on the simulation of an 800KW grade wind turbine. It is considered that the wind power generation has to be studied further in the inland zone with low wind velocity to cope with the possible exhaustion of fossil fuel and ensure a sustainable environmental preservation.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

K-RE100 이행에 필요한 국내해상풍력단지 누적 설치량 전망 연구 (Prospects of Cumulative Installed Power Capacity of Domestic Offshore Wind Projects for K-RE100)

  • 강홍구;김병하;김헌조;양창조;정해창
    • 신재생에너지
    • /
    • 제20권2호
    • /
    • pp.44-54
    • /
    • 2024
  • The objective of this study was to contribute to domestic offshore wind farms by reasonably predicting the expected completion time and installed power generation capacity of offshore wind projects in South Korea. Offshore wind power is drastically regarded as a core tool for clean energy transition and industrial decarbonization in the fight against the climate crisis globally. Especially in South Korea offshore wind power is the main tool in partaking in RE100 and K-RE100, and the Korean government aims to install 14.9 GW of offshore wind farms by 2030. However, this seems to have been significantly delayed due to the complex process of obtaining permits for offshore wind power in Korea. Thus, a reasonable prediction of power generation and a timeline for the final construction are imperative. To establish the delay time for permit licenses, classified location factors were included into site analysis. These factors comprised reviews of transmission and military operability, environmental impact assessment, maritime traffic safety examination, wind resource assessment and an analysis of current offshore wind projects. According to the analysis, the majority of offshore wind projects currently being developed in Korea are predicted to be delayed by 3-5 years as they are among the criteria included in key discussion points for obtaining permits. The cumulative installed power capacity and annual power generation after construction are expected to be 37 GW and 97 TWh respectively.

도서지역 적용을 위한 230 kW급 저풍속 중형 풍력발전기의 전자장해석 (Electromagnetic Field Analysis of 230 kW-class Low Wind Speed Medium Wind Turbine for Island-area Application)

  • 최만수;최혜원;이창민;최현준
    • 신재생에너지
    • /
    • 제16권2호
    • /
    • pp.14-19
    • /
    • 2020
  • Recently, a project to build a carbon zero island with no carbon emissions has been carried out by replacing diesel generators with renewable energy sources in island areas where diesel generators supplied local loads as independent systems. To minimize damage to the lives of islanders, low noise wind generators should be installed by adjusting the rated speed. In islands with low loads, wind turbines that are more efficient than medium-sized wind turbines should be installed. In this study, the generator field analysis and characteristics were analyzed to develop 230 kW-class low wind medium-wind turbine technology. The electromagnetic field analysis program used Maxwell. As a result, the cogging torque was reduced, and the initial maneuver wind speed and loss value were lowered. Hence, the output amount was increased with high efficiency.

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석 (Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System)

  • 노경수;류행수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.