• Title/Summary/Keyword: Wind Power Energy

Search Result 1,564, Processing Time 0.032 seconds

Modeling of a Grid-Connected Wind Energy Conversion System for Dynamic Performance Analysis (동특성해석을 위한 계통연계 풍력발전 시스템의 모델링)

  • Choo, Yeoun-Sik;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1358-1360
    • /
    • 2002
  • This paper presents a modeling and simulation of a utility-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for the wind turbine and presents the relationship of wind turbine output, rotor speed, power coefficient, tip-speed ratio and wind speed when the wind turbine is operated under the maximum power control algorithm. The control objective is to extract maximum power from wind and transfer the power to the utility. This is achieved by controlling the pitch angle of the wind turbine blades. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor speed, pitch angle, and generator output.

  • PDF

Bus Voltage Analysis of Substation Connected to the Wind Generation Farm (풍력발전단지와 연계된 변전소의 모선전압 분석)

  • Kim Young Hwan;Hyun Gil Ju;Ko Seok Bum;Yang Ik Jun;Na Kyoung Yun;Kim Se Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.236-238
    • /
    • 2004
  • In recent years wind turbine technology has undergone the rapid development in response to the demands for increased use of renewable sources of energy. Using wind turbines for production of electrical energy requires reliable operation. The increased share of wind power in electrical system makes it necessary to have grid-friendly interfaces between the wind turbines and the grid in order to maintain power quality. Increasingly wind turbines are being connected into electricity distribution system. The grid-connected wind power stations have many impacts on power systems such as voltage variations, harmonics. The paper investigates the influences of grid-connected wind power generation system on substation bus voltage.

  • PDF

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

Wind Mapping of Singapore Using WindSim (WindSim을 이용한 싱가폴 바람지도 작성)

  • Kim, Hyun-Goo;Lee, Jia-Hua
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.839-843
    • /
    • 2011
  • We have established a wind map of Singapore, a city-state characterized its land cover by urban buildings to confirm a possibility of wind farm development. As a simple but useful approximation of urban canopy, a zero-plane displacement concept was employed. The territory is divided into 15 sectors having similar urban building layouts, and zero-plane displacement, equivalent roughness height at each sector was calculated to setup a terrain boundary condition. Annual mean wind speed and mean wind power density map were drawn by a CFD micrositing model, WindSim where Changi International Airport wind data was used as an in-situ measurement. Unfortunately, predicted wind power density does not exceed 80 $W/m^2$ at 50 m above ground level which would not sufficient for wind power generation. However, the established Singapore wind map is expected to be applied for wind environment assessment and urban planning purpose.

Present and future development of Noksan wind power generation cluster (미래 풍력발전산업의 집적지육성을 위한 녹산클러스터 발전방향)

  • Lim, Hee-Chang;Han, Gyu-Taek;Jang, Gwang-Ho;Jin, Seong-Ho;Kim, Yong-Hwan
    • Journal of the Korean Academic Society of Industrial Cluster
    • /
    • v.3 no.1
    • /
    • pp.11-25
    • /
    • 2009
  • Wind power is the most rapidly growing energy source in the world. Increased focus on climate changes and renewable energy is supporting the wind power industry in gaining momentum. Noksan wind cluster in Busan has been a major area in manufacturing the elementary parts of wind turbine. Despite growing recognition of the significance of Noksan, there has been only limited attention paid and in recent years. This paper reviews the literature of the current burning issues in wind turbine industries in the western countries. In addition, it describes the present state of Noksan wind power generation cluster and suggests the future plans to make it more effective complex.

  • PDF

Real Option Valuation of a Wind Power Project Based on the Volatilities of Electricity Generation, Tariff and Long Term Interest Rate (발전량, 가격, 장기금리 변동성을 기초로 한 풍력발전사업의 실물옵션 가치평가)

  • Kim, Youngkyung;Chang, Byungman
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For a proper valuation of wind power project, it is necessary to consider volatilities of key parameters such as annual energy production, electricity sales price, and long term interest rate. Real option methodology allows to calculate option values of these parameters. Volatilities to be considered in wind project valuation are 1) annual energy production (AEP) estimation due to meteorological variation and estimation errors in wind speed distribution, 2) changes in system marginal price (SMP), and 3) interest rate fluctuation of project financing which provides refinancing option to be exercised during a loan tenor for commercial scale projects. Real option valuation turns out to be more than half of the sales value based on a case study for a FIT scheme wind project that was sold to a financial investor.

Experimental and Numerical Studies on the Possibility of Duct Flow Low-power Generation Using a Butterfly Wind Turbine

  • Hara, Yutaka;Kogo, Shohei;Takagaki, Katsuhiro;Kawanishi, Makoto;Sumi, Takahiro;Yoshida, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.19-29
    • /
    • 2017
  • An objective of this study is to demonstrate the validity of using a small wind turbine to recover the fluid energy flowing out of an exhaust duct for the generation of power. In these experiments, a butterfly wind turbine of a vertical axis type (D = 0.4 m) is used. The output performance is measured at various locations relative to the exit of a small wind tunnel (W = 0.65 m), representing the performance expected in an exhaust duct flow. Two-dimensional numerical analysis qualitatively agrees with the experimental results for the wind turbine power coefficient and rate of energy recovery. When the turbine is far from the duct exit (more than 2.5 D), an energy recovery rate of approximately 1.3% is obtained.

Preliminary Economic Analysis of 20 MW Super-Capacity Wind Turbine Generator in the East Sea of Korea (국내 동해지역 20 MW급 초대용량 풍력발전시스템 사전 경제성 분석)

  • Jun-Young Lee;Seo-Yoon Choi;Rae-Hyoung Yuck;Kwang-Tae Ha;Jae-ho Jeong
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2022
  • Renewable energy is emerging as a way for the government to carry out its 2030 carbon-neutral policy. In this regard, the demand for wind turbine generators for renewable energy is increasing. As a result of restrictions due to civil complaints, offshore wind power generators are actively being developed. At this time, offshore wind power generation has higher maintenance costs, material costs, and installation costs compared to onshore wind power generation. So, an economic evaluation that calculates imports and costs is an important task. The levelized cost of energy (LCOE) is an economic evaluation index used in the energy field. In this paper, based on AEP calculated by windpro, the LCOE calculated by the wind power cost estimation model published in the NREL Economic Analysis Report, installing one 15 MW unit and installing one 20 MW unit and seven units were reviewed and analyzed. As a result, AEP was calculated as 0.140($/Kwh) for the installation of a single 15 MW, 0.142($/Kwh) for the installation of a single 20 MW, and 0.119 ($/Kwh) for the installation of a 20 MW farm. Therefore, it was confirmed that the installation of the single 20 MW was more economical than the installation of the single 15 MW and the installation of the 20 MW farm was most economical.

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

Analysis of Dynamic Response of 1.5MW DFIG Wind Power Simulator with Real-grid Connection (실 계통 연계 1.5MW급 DFIG 풍력발전 시뮬레이터의 응동특성 분석)

  • Choy, Young-Do;Jeon, Young-Soo;Jeon, Dong-Hoon;Shin, Jeong-Hoon;Kim, Tae-Kyun;Jeong, Byung-Chang
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.4-12
    • /
    • 2009
  • The effect of change in DFIG (doubly-fed wind power generator) rotating speed and active power on the grid was analyzed to understand the characteristics of wind power using the wind power simulator connected to the grid at Gochang Power Quality Test Center. Electric power quality improvement devices (DVR, STATCOM, SSTS) and electric power quality disturbance application devices for 22.9 kV grid are equipped at Gochang Power Quality Test Center. Induction motor and VVVF inverter were used to emulate the blade of a wind power generator, and a simulator for Cage wound induction generator and DFIG was developed. The trial line were assumed to be 20 km and 40 km in length, and variable wind speed pattern was set using wind speed data from Ducjeokdo to verify the power characteristics of the wind power generator according to rotating speed.

  • PDF