• Title/Summary/Keyword: Wind Power Energy

Search Result 1,507, Processing Time 0.031 seconds

Power Management of Open Winding PM Synchronous Generator for Unbalanced Voltage Conditions

  • EL-Bardawil, Ashraf;Moussa, Mona Fouad
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2192-2201
    • /
    • 2016
  • Wind energy is currently the fastest-growing electricity source worldwide. The cost efficiency of wind generators must be high because these generators have to compete with other energy sources. In this paper, a system that utilizes an open-winding permanent-magnet synchronous generator is studied for wind-energy generation. The proposed system controls generated power through an auxiliary voltage source inverter. The VA rating of the auxiliary inverter is only a fraction of the system-rated power. An adjusted control system, which consists of two main parts, is implemented to control the generator power and the grid-side converter. This paper introduces a study on the effect of unbalanced voltages for the wind-generation system. The proposed system is designed and simulated using MATLAB/Simulink software. Theoretical and experimental results verify the validity of the proposed system to achieve the power management requirements for balanced and unbalanced voltage conditions of the grid.

Study on Cost of Energy(COE) Reduction Scenario of Korean Offshore Wind Power (해상풍력발전의 에너지단가(COE)절감 시나리오 연구)

  • Sung, Jin Ki;Lee, Jong Hoon;Kang, Kung Suk;Lee, Tae Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1520-1527
    • /
    • 2013
  • The purpose of this study is to derive COE reduction targets of offshore wind power in Korea. In addition, innovation factors for achieving the COE reduction targets were derived. Also the COE reduction targets of offshore wind power was to improve that national policy, technology, industry and improving regulations would like to help. The results of this study has been created based on the various assumptions, scenarios and experts' discussions. Currently, offshore wind power generation price is 229.72won/kWh in 2012. According to the study, COE of offshore wind power has been proposed 88.8won/kWh at third scenario by 2030. This result has shown competitiveness with fossil fuel power generation.

Output Control Simulation of Variable Speed Wind Power System using Real Data (실제 데이터를 이용한 가변속 풍력발전시스템의 출력제어 시뮬레이션)

  • Han, Sang-Geun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1342-1344
    • /
    • 2002
  • Wind is a significant and valuable renewable energy resource. It is safe and abundant and can make an important contribution to future clean, sustainable and diversified electricity supplies. Unlike other sources of energy, wind does not pollute the atmosphere nor create any hazardous waste. In some countries wind energy is already competitive with fossil and nuclear power even without accounting for the environmental benefits of wind power. The cost of electricity from conventional power stations does not usually take full account of its environmental impact (acid rain, oil slick clean up, the effects of climate change, etc). In this paper, a transient phenomenon simulation method for Wind Power Generation System(WPGS) under real weather conditions has been proposed. The simulation method is expected to be able to analyze easily under various conditions with considering the sort of wind turbine, the capacity of system and the converter system. Wind turbine connected to the synchronous generator and power converter was simulated.

  • PDF

Analysis on Factors Influencing on Wind Power Generation Using LSTM (LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석)

  • Lee, Song-Keun;Choi, Joonyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.

Power Performance Testing and Uncertainty Analysis for a 1.5MW Wind turbine (1.5MW 풍력발전시스템 출력 성능시험 및 불확도 분석)

  • Kim, Keon-Hoon;Ju, Young-Chul;Kim, Dae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.63-71
    • /
    • 2006
  • The installed capacity of wind turbines in KOREA are growing and enlarging by the central government's support program. Thus, the importance of power performance verification and its uncertainty analysis are recognizing rapidly. This paper described the Power testing results of a 1.5MW wind turbine and analysed an uncertainty level of measurements. The measured power curves are very closely coincide with the calculated one and the annual power production under the given Rayleigh wind speed distribution are estimated with the $4.7{\sim}22.0%$ of uncertainty but, in the dominant wind speed region as $7{\sim}8m/s$, the uncertainty are stably decreased to $7{\sim}8%$.

Reliability assessment of ERA-Interim/MERRA reanalysis data for the offshore wind resource assessment (해상풍력자원 평가를 위한 ERA-Interim/MERRA 재해석 데이터 신뢰성 평가)

  • Byun, Jong-Ki;Son, Jin-Hyuk;Ko, Kyung-Nam
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.44-51
    • /
    • 2016
  • An investigation on reliability of reanalysis wind data was conducted using the met mast wind data at four coastal regions, Jeju Island. Shinchang, Handong, Udo and Gangjeong sites were chosen for the met mast sites, and ERA-Interim and MERRA reanalysis data at two points on the sea around Jeju Island were analyzed for creating Wind Statistics of WindPRO software. Reliability of reanalysis wind data was assessed by comparing the statistics from the met mast wind data with those from Wind Statistics of WindPRO software. The relative error was calculated for annual average wind speed, wind power density and annual energy production. In addition, Weibull wind speed distribution and monthly energy production were analyzed in detail. As a result, ERA-Interim reanalysis data was more suitable for wind resource assessment than MERRA reanalysis data.

Status of the technology development of large scale HTS generators for wind turbine

  • Le, T.D.;Kim, J.H.;Kim, D.J.;Boo, C.J.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.18-24
    • /
    • 2015
  • Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design - operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

The Development of the Monitoring System for Power performance using the Lab View (LabView를 이용한 풍력발전 성능평가용 모니터링 시스템 개발)

  • Ko, Seok-Whan;Jang, Moon-Seok;Ju, Young-Chul;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.69-74
    • /
    • 2009
  • Monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind turbine in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house, and of utilizing the measured data(fatigue data and electric analyzing data of wind turbine)for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind turbine during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system(BusDAQ) was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized. Also, This paper is introduced to make the best use of the developed monitoring system and to explain about construct of the system and detailed data communication of its system.

Analysis of the Capacity Credit of Wind Farms (풍력발전기의 Capacity Credit추정에 관한 연구)

  • Wu, Liang;Park, Jeong-Je;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.16-18
    • /
    • 2008
  • Because of being environmentally friendly, renewable energy resources has been growing at a high rate. Wind energy is one of the most successfully utilized of such sources for producing electrical energy. Due to the randomness of wind speed, wind farms can not supply power with a balanceable level as well as conventional power plants. The reliability evaluation of wind power is more and more important. Capacity credit is used to estimate the capacity credit of power systems including wind farms. This paper presents a method of capacity credit calculation for a power system considered wind farms and shows how it gets study on an actual power system (the Jeju Island power system). The paper describes the step of capacity credit calculation and presents test results, which indicate its effectiveness.

  • PDF

Feasibility study of wind power generation considering the topographical characteristics of Korea (우리나라 지형특성을 고려한 풍력발전 타당성 연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Shim, Kwan-Shik;Jung, Kwen-Sung;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.