• Title/Summary/Keyword: Wind Power

Search Result 2,991, Processing Time 0.037 seconds

A Study on Estimation of Wind Power Generation using Weather Data in Jeju Island (기상관측자료를 이용한 제주도 풍력단지의 풍력발전량 예측에 관한 연구)

  • Ryu, Goo-Hyun;Kim, Ki-Su;Kim, Jae-Chul;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2349-2353
    • /
    • 2009
  • Due to high oil price and global warming of the earth, investments for renewable energy have been increased a lot continuously. Specially, wind power has been received a great attention in the world. In order to construct a new wind farm, forecasting of wind power generation is essential for a feasibility test. This paper investigates wind velocity measurement data of Gosan weather station which located in Hankyung of Jeju island. This paper presents results of estimation of wind power generation using digital weather forecast provided from Korea meteorological administration, and the accuracy of the wind power forecasting by comparison between forecasted data and actual wind power data.

A Clustering Approach to Wind Power Prediction based on Support Vector Regression

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.108-112
    • /
    • 2012
  • A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly wind energy is unlimited in potential. However, due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. It is reported that, compared with physical persistent models, statistical techniques and computational methods are more useful for short-term forecasting of wind power. Among them, support vector regression (SVR) has much attention in the literature. This paper proposes an SVR based wind speed forecasting. To improve the forecasting accuracy, a fuzzy clustering is adopted in the process of SVR modeling. An illustrative example is also given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power.

Study on a Development of the Prediction Equation of the Wind Power Plant Noise (풍력발전소 소음 영향 예측식 개발에 관한 연구)

  • Gu, Jinhoi;Lee, Jaewon;Lee, Woo Seok;Jung, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • The wind power plants were installed in many places because of the low climate changing effects since 2000. Generally, the wind power plants located in the seaside and the mountainous area and the heights of the windmills are about 40 m~140 m above the ground level. So the noises emitted from the wind power plants propagate far away compared with other environment noise sources like trains and cars noise. Because of these reasons, the noise emitted from the wind power plant is easy to cause the additional social problems like as noise complaints. Under the situation, the ministry of environment has established the guideline to evaluate the environmental effects for the wind power plant. According to the guideline, the noise of the wind power plant has to meet 55 dB(A) at daytime and 45 dB(A) at night in the residential area, which is regulated in the noise and vibration management law. But, it is difficult to estimate the noise emitted from the wind power plant because of the absence of the prediction model of the wind power plant noise. Therefore, the noise prediction model for wind power plants using the regression analysis method is developed in this study. For the development of the model, the sound pressure levels of the wind power plants in Jeju island are measured and the correlations between the sound pressure levels are analyzed. Finally, the prediction equation of the wind power plant noise using by regression analysis method derived. The prediction equation for the wind power plant noise proposed in this study can be useful to evaluate the environmental effects in any wind power plant development district.

Selection of Available Sector to Measure Power Generation for Validation of Wind Turbine Performance (풍력터빈 성능 검증을 위한 출력측정 유효영역 선정)

  • Oh, Ki-Yong;Jun, Hoon;Lee, Jun-Shin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.525-528
    • /
    • 2009
  • Power generation of wind turbine which is installed in wind farm should be measured to predict economic feasibility of wind farm. Also electric power company want to verify wind turbine performance which is stated by manufacturer. The International Electrotechnical Commission(IEC) published 61400-12-1 "Power performance measurements of electricity producing wind turbines" for test of wind turbine power performance. In this paper, measurable sector of wind speed is analysed based on IEC 61400-12-1 to verify power curve of wind turbine with various wind turbine in wind farm.

  • PDF

A New Control Scheme of Wind Farm Considering P,Q References (풍력 발전단지의 출력 지령값을 고려한 계통 연계 운영 방안)

  • Choi, Jung-Hyun;Park, Jin-Woo;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1172-1173
    • /
    • 2008
  • At the moment, the control ability of wind farms is a prime research concern for the grid integration of large wind farms, due to their required active role in the power system. As more wind turbines are installed, the power from wind energy will start to replace conventional generation units and its influence on power systems cannot be neglected. Besides, because of the intermittent nature of wind the output power of wind turbines fluctuates according to wind speed variation. Especially an isolated power system with small capacity such like Jeju needs more systematic solutions and regulations(grid code). This paper presents the idea of approach for centralized operating wind farm strategy to regulate the wind farm power production to the reference power ordered by the system operator. The doubly fed induction generator(DFIG) can control active and reactive power in feasible range. So wind farm comprised of DFIG has the possibility of a controllable component in the power system. The presented wind farm control has a hierarchical structure with both a wind farm control level and a wind turbine control level.

  • PDF

Technology Development Trends for High Altitude Wind Power Genration (고공 풍력발전 기술개발 현황)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • At the altitudes above 3km, the wind is three to four time faster and less variable than at the current MW sized wind turbine hub height of around 100m. In addition, power generation from wind turbines installed on the ground is intermittent because local wind conditions are affected by local topography and artificial structures. The wind energy researchers and engineers are now looking for revolutionary ideas to utilize high altitude wind resources in-creasing the capabilities of wind turbine installations. This article presents and discusses several concepts for wind energy exploitation from wind at high altitudes. The concepts presented in this paper make use of lifting bodies, called wings or kites, connected to a tether that stetches into the higher regions of the atmosphere.

Study of the Spatial Location Analysis for Domestic Offshore Wind Farm (국내 해상풍력 발전단지 입지 분석 연구)

  • Kim, Dong-Hwi;Lee, Yong-Jun;Ryu, In-Ho;Seo, Dae-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.504-511
    • /
    • 2010
  • After facing the fact such as fossil-fuel depletion, global warming, the Kyoto Protocol coming into force of mandatory reductions of carbon dioxide, the world is actively promoting the spread of the solar, wind, tidal, geothermal and other clean renewable energy technology development. Among them, wind power is the only alternative energy to secure a comparable price competition with fossil fuels because cheaper price power generation than other renewable energy when creating large-scale wind farm, thus wind power is the fastest growing industries in the world in the renewable energy field. Especially the offshore wind power is showing rapid growth as most of the wind power sector because of less changes of wind speed, no restrictions of land use, and large-scale development of offshore wind power. In this paper, the field of site selection and spatial location analysis techniques for development of large-scale offshore wind farm are discussed primarily. This paper shows overview of offshore wind power and establishment procedure for development of offshore wind farm.

  • PDF

Long Term Variation Trend of Wind and its Impact Upon Wind Power Generation in Taiwan

  • Na, Wang;Quan, Wan;Sheng, Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.782-788
    • /
    • 2014
  • Wind power generation has been viewed as a promising renewable energy to meet challenge of climate change. However, wind power is susceptible to climate change because previous investigation shows there are declining trends of the land surface wind speeds over middle and lower latitudes. Since long term variation trends is notably different from inter-annual random variation and could have notable impact on wind farm from planning perspective, observed meteorological data of Taiwan is investigated to find out long term variation trends of wind speed and its impact on wind power generation. It is discovered that wind speed in majority of stations in west coast of Taiwan have ascending trends while that of all investigated stations in east coast have descending trends. Since east of Taiwan is not suitable for wind power development for its higher likelihood suffering Typhoons and most of established wind farm locate in west coast of Taiwan, it is speculated that long term variation trend of wind do not have notable negative impact on wind power generation in Taiwan.

Flexible Transmission Expansion Planning for Integrating Wind Power Based on Wind Power Distribution Characteristics

  • Wang, Jianxue;Wang, Ruogu;Zeng, Pingliang;You, Shutang;Li, Yunhao;Zhang, Yao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.709-718
    • /
    • 2015
  • Traditional transmission planning usually caters for rated wind power output. Due to the low occurrence probability of nominal capacity of wind power and huge investment in transmission, these planning methods will leads to low utilization rates of transmission lines and poor economic efficiency. This paper provides a novel transmission expansion planning method for integrating large-scale wind power. The wind power distribution characteristics of large-scale wind power output and its impact on transmission planning are analyzed. Based on the wind power distribution characteristics, this paper proposes a flexible and economic transmission planning model which saves substantial transmission investment through spilling a small amount of peak output of wind power. A methodology based on Benders decomposition is used to solve the model. The applicability and effectiveness of the model and algorithm are verified through a numerical case.

Study on the Prediction of Wind Power Outputs using Curvilinear Regression (곡선회귀분석을 이용한 풍력발전 출력 예측에 관한 연구)

  • Choy, Youngdo;Jung, Solyoung;Park, Beomjun;Hur, Jin;Park, Sang ho;Yoon, Gi gab
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.627-630
    • /
    • 2016
  • Recently, the size of wind farms is becoming larger, and the integration of high wind generation resources into power gird is becoming more important. Due to intermittency of wind generating resources, it is an essential to predict power outputs. In this paper, we introduce the basic concept of curvilinear regression, which is one of the method of wind power prediction. The empirical data, wind farm power output in Jeju Island, is considered to verify the proposed prediction model.