• Title/Summary/Keyword: Wind Path

Search Result 133, Processing Time 0.032 seconds

Formation of Internal Wind Paths of Open Space and Its Effect on Meteorological Factors and the Generation of Negative Air Ions (녹지 내부 바람통로가 기상요소와 음이온 발생량 변화에 미치는 영향)

  • Oh, Deuk-Kyun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.403-413
    • /
    • 2020
  • The purpose of this study is to understand the formation of internal wind paths of open space and its effect on meteorological factors and the generation of negative air ions. Various types of internal wind paths of open space were formed. Subsequently, changes in meteorological factors in each type were measured and the generated negative air ions were analyzed. The four key findings of the study are summarized as follows. First, the average wind speed formed inside the open space was analyzed such that the difference in wind speed was dependent on the difference in the composition of the wind path. Second, the negative air ion generation was observed to have the same trend as the average wind speed difference. Third, changes to the meteorological factors were more evident depending on the difference in wind path formation patterns. Solar radiation was expected to be highly affected by the physical structure (direction) of the target site. The relative humidity was found to show large difference depending on the different wind path type; however, this difference was significantly reduced when converting to absolute humidity. Fourth, it was found that the wind path formation type of open space affects meteorological factors through path analysis, and the changed meteorological factors affect the amount of generated negative air ions. Two conclusions can be obtained based on these results. First, the changes in internal wind speed formation of open space directly reduced the amount of generated negative air ions. Second, the changes in wind speed affect meteorological factors as well as the amount of generated negative air ions.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

The nonlinear galloping of iced transmission conductor under uniform and turbulence wind

  • Liu, Zhonghua;Ding, Chenhui;Qin, Jian;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.465-475
    • /
    • 2020
  • The analytical approach for stability and response of iced conductor under uniform wind or turbulent wind is presented in this study. A nonlinear dynamic model is established to describe the motion of iced conductor galloping. In the case of uniform wind, the stability condition is derived by analyzing the eigenvalue associated with linearized matrix; The first order and second order approximation of galloping amplitude are obtained using multi-scale method. However, real wind has random characteristics essentially. To accurately evaluate the performance of the galloping iced conductor, turbulence wind should be described by random processes. In the case of turbulence wind, the Lyapunov exponent is conducted to judge the stability condition; The probability density of displacement is obtained by using the path integral method to predict galloping amplitude. An example is proposed to verify the effectiveness of the previous methods. It is shown that the fluctuating component of wind has little influence on the stability of iced conductor, but it can increase galloping amplitude. The analytical results on stability and response are also verified by numerical time stepping method.

Backward Path Following Under a Strong Headwind for UAV (강한 맞바람이 발생 했을 때 무인기의 후진경로추종에 관한 연구)

  • Byeon, Gwang-Yeol;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.376-382
    • /
    • 2014
  • This paper presents a method to enable a UAV in autonomous flight along a desired path to follow it backwards when a strong headwind prevents the vehicle from proceeding forward. The main purpose of the reverse path following in this study is to return to a mission quickly when the wind becomes weaker. When the nonlinear path following guidance law is used, there are two reference points available in the path following. One of the two points is selected considering a flight direction for calculating a straight-line distance(L) from the vehicle to the point for the path following. An initial heading angle with respect to the wind direction determines whether the reverse path following is feasible or not at the time of the wind is generated. The result of the proposed method based on kinematic model in this study is verified through simulations implemented in Matlab.

A study on climate design using cold air flow to reduce air contaminant concentration of underground garage in the apartment complex (냉기류를 이용하여 공동주택단지 내 지하주차장 오염농도를 저감하는 기후 디자인에 관한 연구)

  • Kim, Tae Han;Cho, Kyung Hak;Chroi, Ji Hye;Kim, Seog cheol
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • This study suggested practical application of climate design on apartment complex with the focus on the use of Cold Air Flow and green building design method. The domestic research on the wind path analysis has been associated since the early 21th century in urban planning and site planning, this initiative study aimed to mitigate the urban heat island effect and to promote the sustainable urban development. It is, however, mostly focused on the flow analysis and heat flow in the urban context, due to the poor application of the wind path analysis in actual planning and design. Special attention is paid to the possibilities of identifying and developing the application methods in relation to Cold Air Flow and building design. This study examined these relations and suggested some trenchant approach to a more comprehensive and efficient use of the wind flow analysis in climate design.

Effect of motion path of downburst on wind-induced conductor swing in transmission line

  • Lou, Wenjuan;Wang, Jiawei;Chen, Yong;Lv, Zhongbin;Lu, Ming
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.211-229
    • /
    • 2016
  • In recent years, the frequency and duration of supply interruption in electric power transmission system due to flashover increase yearly in China. Flashover is usually associated with inadequate electric clearance and often takes place in extreme weathers, such as downbursts, typhoons and hurricanes. The present study focuses on the wind-induced oscillation of conductor during the process when a downburst is passing by or across a specified transmission line. Based on a revised analytical model recently developed for stationary downburst, transient three-dimensional wind fields of moving downbursts are successfully simulated. In the simulations, the downbursts travel along various motion paths according to the certain initial locations and directions of motion assumed in advance. Then, an eight-span section, extracted from a practical 500 kV ultra-high-voltage transmission line, is chosen. After performing a non-linear transient analysis, the transient displacements of the conductors could be obtained. Also, an extensive study on suspension insulator strings' rotation angles is conducted, and the electric clearances at different strings could be compared directly. The results show that both the variation trends of the transient responses and the corresponding peak values vary seriously with the motion paths of downburst. Accordingly, the location of the specified string, which is in the most disadvantageous situation along the studied line section, is picked out. And a representative motion path is concluded for reference in the calculation of each string's oscillation for the precaution of wind-induced flashover under downburst.

A Design Model Development for Street-Oriented Block Housing Reducing Urban Heat Island Effects (도시 열섬 완화를 위한 가로형 집합주택 계획모델 연구)

  • Kim, Ho-Jeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.6
    • /
    • pp.27-37
    • /
    • 2019
  • This study focused on the possibility of reducing the cooling load through the change of micro climate in the outdoor space during summer season. This study proposes an efficient planning model by comparing the effects of urban heat island mitigation through wind path planning, outdoor space vegetation, and exterior material change by using the basic model of the street-oriented block housing proposed in the previous research by the same author. As a result, the most effective wind path planning strategy in the street-oriented block housing was the change of the air flow through the mass height adjustment. When the tall building masses were staggered and arranged in a balanced manner, the overall wind environment could be improved. The greater the height difference between low and high masses, the better the air flow was shown. It was also important to arrange the building masses so that the inlet of the main wind was open and to allow the external space to connect to the adjacent block to create a continuous flow. The change of outdoor space vegetation and flooring, and the formation of wind paths through the opening of lower part also showed the effect of heat island reduction. In addition, the change of PMV in summer was the biggest influence of shadow by tall building mass. Attention should be paid to the fact that high-albedo exterior materials are adversely affected by multiple reflections in dense street-oriented block housing. The use of albedo of the exterior material showed that it is necessary to pay attention to apply in the high density block housing. This is attributed to the rise of the temperature due to the absorption of energy into the low-albedo flooring, where the high-albedo exterior causes multiple reflections.

An Analysis of Local Wind Field by Location of Industrial Complex using CALMET and ENVI-MET (CALMET 및 ENVI-MET를 이용한 산업단지 입지에 따른 국지 바람장 분석)

  • Song, Dong Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.417-429
    • /
    • 2012
  • In this study, a diagnostic wind model, CALMET and a micrometeorological numerical model, ENVI-MET were used to analyze the wind field in and out of the site designated for the industrial complex around Buron-myeon, Wonju, Gangwon-do. The results of modeling with CALMET showed that the air flow in industrial complex was little affected by the surrounding terrain. And the result of wind field analysis with ENVI-MET showed there are turbulent air flows such as cavity and wake around structures in the industrial complex, which can cause high-air pollution. Therefore, it is necessary to design the industrial complex considering the wind path according to wind directions.

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.

A Study of Atmospheric Field around the Pohang for Dispersion Analysis of Air Pollutants -Numerical Simulation of Wind Field- (대기오염 확산 해석을 위한 포항지역 기상장 연구 -바람장 수치모의-)

  • 이화운;정우식;김현구;이순환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Sea/land circulation system is a representative mesoscale local circulation system in coastal area. In this study, wind fields around coastal area. Pohang, which is affected by this system was investigated and its detailed characteristic analysis was carried out. The following can be found out from the numerical simulation. Generally, at nighttime mountain winds prevail and land breeze toward the coastal area was well simulated During daytime, valley wind and sea breeze was simulated in detail. Especially, as a result of analyzing the land breeze path, it could be found along the coastline as it flows out through low land coastal area. In order to investigate the accuracy of model results. wind speed, temperature and wind direction of continuous typical sea/land breeze occurrence day was compared with observation data. Analyzing the characteristics of local circulation system was very hard because of horizontally sparse observation data but from the above result, a numerical simulation using RAMS, which satisfies the spatial high resolution, will provide more accurate results.