• Title/Summary/Keyword: Wind Generation

Search Result 1,267, Processing Time 0.028 seconds

Possibility of Wind Power Generation by a Vehicle-Induced Wind at the Median Strip on Hightway (주행차량에 의한 중앙분리대 유도풍의 풍력발전 활용 가능성)

  • Woo, Sang-Woo;Kim, Hyun-Goo;Jang, Moon-Seok;Shin, Hyung-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.315-317
    • /
    • 2008
  • The purpose of this study is to confirm the possibility of wind power generation by a vehicle-induced at the median strip on highway. In order to find out wind field information, a CFD method was used. According to the simulation results, the x, y, z-component of the wind velocity around a median strip are rapidly changed at near before and behind a moving vehicle. The x-component of the wind velocity appears high within the range of the length of the passing vehicle, and the wind direction appeared in the opposite direction at the behind of a vehicle. However, x and y-components of the wind velocity at the behind of vehicle are shown constantly. We confirmed possibility of wind power generation using a vehicle-induced wind at the median strip.

  • PDF

A Study on Configuration of Small Wind Turbines for Maximum Capacity of Wind Power Systems Interconnected With a Building (빌딩 내 최대 풍력발전설비 연계를 위한 소형풍력발전원 구성에 관한 연구)

  • Lee, Yeo-Jin;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.605-612
    • /
    • 2017
  • One of the biggest environmental issues that our world has been facing is climate change. In order to cope with such environmental issues, the world is putting a great deal of effort into energy conservation. The building sector, in particular, consumes 36% of the energy consumed worldwide and emits considerable amount of greenhouse gases. Therefore, introduction of renewable energies in the building sector is highly recommended. Renewable energy sources that can be utilized in the building sector include sunlight, solar heat, geothermal heat, fuel cells and wind power. The wind power generation system which converts wind energy into electrical energy has advantages in that wind is an unlimited and pollution-free resource. It is suitable to be connected to existing buildings because many years of operational experience and the enhanced stability of the system have made it possible to downsize the electrical generator. In case of existing buildings, it is necessary to consider the live loads of the buildings to connect the wind power generation system. This paper, through the connection of the wind power generation with existing buildings, promotes reduction of greenhouse gas emissions and energy independence by reducing energy consumption in the building sector. In order to connect the wind power generation system with an exciting building, the live load of the building and the area of the rooftop should be considered. The installable model is selected by comparing the live load of the building and the load of the wind power generation system. The maximum number of the wind turbines that can be installed is obtained by considering the separation distance between the wind turbines within the area of the rooftop. Installations are divided into single installations and multiple installations of two different types of wind turbines. After determining the maximum installable number, the optimal model that can achieve the maximum annual power generation will be selected by comparing the respective total annual amount of the power generation of different models.

Grid-connected Wind Turbine Generation System Modeling and Simulation Using MATLAB/Simulink (MATLAB/Simulink를 이용한 계통연계 풍력발전 시스템 모델링 및 시뮬레이션)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Gil-Soo;Jang, Moon-Seok;Ko, Seok-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.321-323
    • /
    • 2008
  • This study suggests a modeling of grid-connected wind turbine generation systems and performs simulation according to increase/decrease of real wind speed. MATLAB/Simulink implemented modeling of grid-connected wind turbine generation system. Terminal voltage, grid voltage, and active/reactive power shall be observed following the performance of simulation.

  • PDF

The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms (발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

Development and application of Auto-Wind program for automated analysis of wind resource (풍력자원해석 자동화 프로그램 Auto-Wind 개발과 응용)

  • Yoon, Seong-Wook;Jeon, Wan-Ho;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.191-191
    • /
    • 2010
  • As many researchers want to predict or assess more about wind condition and wind power generation, CFD(Computational Fluid Dynamics) analysis method is very good way to do predict or assess wind condition and power generation. But CFD analysis is needed much knowledge of aerodynamics and physical fluid theory. In this paper, Auto-Wind CFD analysis program will be introduced. User does not need specific knowledge of CFD or fluid theory. This program just needs topographical data and wind data for initial condition. Then all of process is running automatically without any order of user. And this program gives for user to select and set initial condition for advanced solving CFD. At the last procedure of solving, Auto-Wind program shows analysis of topography and wind condition of target area. Moreover, Auto-Wind can predict wind power generation with calculation in the program. This Auto-Wind analysis program will be good tool for many wind power researchers in real field.

  • PDF

Simulation of the Wind Power Generation System with Energy Storage System (전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션)

  • Oh, Si-Doek;Lim, Hee-Sue;Seo, Seok-Ho;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

Long Term Variation Trend of Wind and its Impact Upon Wind Power Generation in Taiwan

  • Na, Wang;Quan, Wan;Sheng, Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.782-788
    • /
    • 2014
  • Wind power generation has been viewed as a promising renewable energy to meet challenge of climate change. However, wind power is susceptible to climate change because previous investigation shows there are declining trends of the land surface wind speeds over middle and lower latitudes. Since long term variation trends is notably different from inter-annual random variation and could have notable impact on wind farm from planning perspective, observed meteorological data of Taiwan is investigated to find out long term variation trends of wind speed and its impact on wind power generation. It is discovered that wind speed in majority of stations in west coast of Taiwan have ascending trends while that of all investigated stations in east coast have descending trends. Since east of Taiwan is not suitable for wind power development for its higher likelihood suffering Typhoons and most of established wind farm locate in west coast of Taiwan, it is speculated that long term variation trend of wind do not have notable negative impact on wind power generation in Taiwan.

A simulation of wind generation for the wind turbine analysis (풍력발전기 성능평가를 위한 바람 시뮬레이션)

  • Lee, Sunggun;Suk, Sangmin;Chung, Chinhwa;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.188.1-188.1
    • /
    • 2010
  • This paper describes the effort for the development of an actual wind simulation method on the wind turbine performance evaluation. It should be emphasized that the deep knowledge on real wind field is a key factor for both the design of a wind turbine and the performance evaluation. With this reason, there had been several simulation attempts to accurately match with the actual wind data. With an existing wind generation algorithm is under consideration, this study introduces several more new concepts including Van der Hoven spectrum being implemented in different methodology. Also this paper will compare the result from the wind simulations by using the basic formula with that by using MATLAB and SIMULINK previously developed. In addition, like the existing wind generation algorithm, random process for actual wind field simulation and white noise are incorporated to closely produce the actual wind field models.

  • PDF

A Study on the Wind rower Generation and Its Economic Feasibility at Daekwanryung (대관령 풍력단지의 풍력발전량 및 경제성 분석)

  • Ha Jeong-woo;Kim Suduk
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.123-132
    • /
    • 2005
  • An economic feasibility study is performed for the wind power generation with the examination of the wind speed and its distribution at Daekwanryung at which a wind fm is under construction. In this analysis, the distribution of wind speed is the key issue. The wind distribution which is usually expressed in terms of Weibull distribution with shape factor and scale factor needs to be reexamined to find the proper values of them according to the empirical wind speed data. After this kind of analysis is done, annual power generation of wind is calculated. Due to the lack of cost information, we applied EWEA data instead or the actual information from the site. The result would be of use to determine the 'reference price' of wind power under the current system of 'compensating subsidy for renewable power generation'.

Voltage quality and Network Interconnection Standard Suitability in Jeju-Hangwon Wind Power Generation Farm (제주행원 풍력발전단지의 전압품질 및 연계기준 적합성 분석)

  • Kim, Se-Ho;Kim, Eel-Hwan;Huh, Jonhg-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.53-59
    • /
    • 2006
  • The number of wind generation installations are growing substantially in Jeju, Korea. Many of these installations are significant in size and directly connected to the distribution system. Utility grid interconnection standards for interconnecting non-utility distributed generation systems are essential to both power system company and generation company. These interconnection standards are important to utilities, customers, wind generation manufactures and nation. In this paper, it is investigated the voltage quality and the suitability of Jeju-Hangwon wind power generation farm by network interconnection technology standard.